Olcode: 10081982

FE Sen-II R-19 c Schene All bronches

(Time: 3 hours)

Max Marks: 80

Note: (1) Question No. 1 is Compulsory.

- (2) Answer any three questions from Q.2 to Q.6.
- (3) Figures to the right indicate full marks.

Q1.

a) Solve
$$(2x^2 + 3y^2 - 7)x dx + (3x^2 + 2y^2 - 8)y dy = 0$$

b) Solve
$$\frac{d^2y}{dx^2} - y = e^{2x} + \sin 2x$$

Using Euler's method find the approximate value of y at
$$x = 0.5$$

taking $h = 0.1$, $\frac{dy}{dx} = 2 + \sqrt{xy}$, $y(0) = 1$

d) Change the order of integration
$$I = \int_0^2 \int_{\sqrt{2x}}^2 f(x, y) \, dy \, dx$$
 5

Q2.

a) Solve
$$(D^3 - 2D + 4)y = 3x^2 - 5x$$

b) Solve
$$\cos x \frac{dy}{dx} + y \sin x = \sec^2 x$$

c) Evaluate
$$\int_0^6 e^x dx$$
 by using (i) Trapezoidal rule, (ii) Simpson's $1/3^{\text{rd}}$ rule, (iii) Simpson's $3/8^{\text{th}}$ rule

Q3.

using the Rule of DUIS prove that
$$\int_0^\infty \frac{\log(1+ax^2)}{x^2} dx = \pi \sqrt{a}$$
where $a \ge 0$ hence deduce
$$\int_0^\infty \frac{\log(1+x^2)}{x^2} dx = \pi$$

Evaluate
$$\int \int xy \, dxdy$$
 over the region bounded by X-axis, line $x = 2a$ and the parabola $x^2 = 4y$

Evaluate
$$\int_0^a \int_0^b \left(1 - \frac{x}{a}\right) \int_0^c \left(1 - \frac{x}{a} - \frac{y}{b}\right) z \, dz \, dy \, dx$$

Q4.

Find area of one loop of lemniscate $r^2 = a^2 \cos 2\theta$ a)

6

- Using Runge-Kutta method of fourth order find the approximate value 6 b) of y at x = 0.1 taking h = 0.1, $\frac{dy}{dx} = x + \sqrt{y}$ & y(0)=1
- Evaluate $\int_0^3 \sqrt{3x x^2} \ dx \cdot \int_0^\infty \frac{1}{(1 + x^2)^{3/2}} \ dx$ c)

Q5.

- Evaluate $\iint \int (x^2 + y^2 + z^2) dx dy dz$ over the first octant of the sphere $x^2 + y^2 + z^2 = a^2$ a)
- Solve $(x^2y^2 + 2)ydx + (2 2x^2y^2)xdy = 0$ b)
- Solve by method of Variation of parameter c) 8 $(D^2 - 2D + 1)v = e^x \sin x$

Q6.

- Using Euler's modified method find the approximate value of a) y at x = 1.2 taking h = 0.2, $\frac{dy}{dx} = \log_e(x + y)$, y(1) = 26 correct upto 4 decimal places
- Find the length of cardioide $r = a(1 \cos \theta)$ which lies outside the b) circle $r = a\cos\theta$.
- Change to polar coordinates and evaluate $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} \frac{x}{\sqrt{x^2+v^2}} dy dx$ c)

FE sem-II R-19 C scheme All Branches

Q3		Attempt both the questions	15
	A	What are scalar and vector fields? Give examples. Explain the term 'curl of a vector' and state its significance. Show that the divergence of the curl of a vector is zero.	8 (4+4
	В	With neat and labelled diagrams explain the construction and working of a Nd:YAG laser. Give its application.	7
Q4		Attempt all three questions (5 marks each)	15
	A	What is diffraction? Illustrate by drawing a neat diagram of any one type of diffraction. How can the resolving power of a grating be increased? Find maximum order of diffraction if a grating having 6000 lines per cm is illuminated by a laser beam of wavelength 6000 Å.	5
6	В	What is the divergence of a vector field? Give its physical significance. Find the divergence of a field $F = xz \hat{1} + y^2z^3 \hat{j} - xyz k$ at a point (1, -1, 1). Interpret the result you obtain.	<i>K,</i>
	С	What is the need of Nanotechnology? Classify nanomaterials on the basis of their dimensions? Explain the significance of surface area to volume ratio?	Š
Q5		Attempt all three questions (5 marks each)	15
ē.	A	What is time dilation? Derive it mathematically. The length of a moving rod is found to be one third of its length when at rest. What is the speed of the rod relative to the observer?	5
	В	With a neat labelled diagram, explain the construction and working of an transmission electron microscope.	5
	C	With a neat labelled diagram explain the construction and working of a Photodiode Optical Sensor.	5
Q6		Attempt all three questions (5 marks each)	15
	A	Explain Gauss's laws for static electric and static magnetic fields in differential and integral forms.	5
	В	Explain the two main types of approaches used to synthesise a nanomaterial. Discuss in detail any one method with reference to the top down approach. Give the advantage of this method over the other methods.	5

Question number 1 is compulsory

Time: 2 Hours

Maximum Marks: 60

		iii Assume suitable data wherever required	
		iv Figures to the right indicate full marks for that question	
Q1		Attempt any five out of six (3 marks each)	15
	Α	What is a grating? What is a grating element? Define resolving power of an optical instrument.	3
	В	Explain metastable state and population inversion. Draw a basic three level pumping scheme diagram to represent the states.	3
	С	Draw a neat labeled diagram to represent a critical angle. Calculate the acceptance angle for an optical fibre with 1.44 and 1.4 as the refractive indices of core and cladding respectively.	3
	D	Find the gradient at a point (-1, -1, -2) for a scalar field $F = \frac{1}{2}(x^3y - xy^3)$.	3
	E	Find the fractional increase in mass of a particle moving with a velocity of 0.2 times the speed of light.	3
	F	What is a transducer? What is the piezoelectric effect and inverse piezoelectric effect?	3
Q2		Attempt both the questions	15
	Λ	Discuss with diagram the phenomenon of Fraunhofer diffraction at a single slit and write the conditions for its maxima and minima. Find the order of diffraction if a diffraction grating is used at normal incidence for a line 'A' of wavelength 5600 Å in a certain order being superimposed on another line 'B' of the next higher order having wavelength 4200 Å. Now if the angle of diffraction for the line A is 45°, then how many lines per cm are there in this grating for the above obtained order?	8 (5+3)
2 2		With the help of a neat labelled diagram explain the step index and graded index fibers. How does a ray of light travel in these fibres? What is the significance of the 'V' number? A multimode step index fibre with core RI 1.5 and cladding RI 1.45 has a core radius of 9 micrometre. Calculate the normalised frequency of the fibre and the number of guided modes at an operating wavelength of 7500 Å.	7 (4+3)

Paper / Subject Code: 29713 / Engineering Chemistry - II

apade:10080019

FE sem-II All Branches R-19 C scheme

Max. Marks 60 Time: 2 hours N.B. 1. Question No.1 is compulsory 2. Attempt any Three Questions from the remaining Five Questions 3. Figures to the right indicate full marks 4. Atomic weight: C = 12, H = 1, O = 16, N = 14, S = 32, C1 = 35.515 Q.1 Answer any five from the following: Explain Fluorescence phenomena in brief. a. b. Define electrochemistry and explain redox reaction. Define fuels. Give characteristics of good fuel. d. Why Galvanizing is preferred over tinning? Explain 'Design for energy efficiency' principle of Green Chemistry. f. Explain any two selection rules of spectroscopy. 2.5g of coal sample on combustion in Bomb's calorimeter produced 0.28 g of g. BaSO₄ precipitate. Calculate the percentage of sulphur. 6 Explain how does following factors affect rate of corrosion: Q.2 a) pH of the medium. i) Relative area of anodic and cathodic parts of metal. ii) Position of metal in galvanic series. iii) Explain the conventional and greener pathway for the synthesis of Indigo. 5 b) Mention the principle associated with this synthesis Write the cell reaction for Ni | Ni²⁺ and Cu²⁺ | Cu half cells and calculate 4 c) standard potential if, $E^0_{Ni} = -0.257V$ and $E^0_{Cu} = 0.337V$. What is Flame photometry? Explain it with respect to principle, working, 6 O.3 a) diagram and applications. What is reference electrode? Differentiate between Electrolytic and galvanic 5 b) cell. Calculate % atom economy for the following reaction: 4 c) CH_3 -CH= CH_2 + H_2O CH₃-CH₂-CH₂-OH Propanol Propene Calculate the volume and weight of air required for complete combustion of **Q.4** a) 6 Im^3 of gaseous fuel having the following composition: $H_2 = 30\%$, CH₄ =50%, N₂ = 7 %, CO₂ = 10%, O₂ = 3% (Molecular weight of air =28.94). b) Explain trans-esterification method for preparation of biodiesel from 5 vegetable oil with reaction and give its advantages. c) Differentiate between absorption and emission spectra. 4

Paper / Subject Code: 29713 / Engineering Chemistry - II 6 Q.5 a) Explain the mechanism of dry corrosion due to oxygen gas with the help of diagram and reactions. A sample of coal was found to contain C = 82%, H = 4%, S = 1%, O = 1%, N5 b) = 2%, Ash=10%. Calculate HCV and LCV using **Dul**ong's Formula. 4 Draw a well labelled Jablonski diagram. Explain Sacrificial anode cathodic protection method to control corrosion of 6 **Q.6** a) metal pipeline with its principle, diagram and applications. 2.5 gm of air-dried coal sample was taken silica crucible, after heating it in an 5 oven at 110°C for 1hr the residue weighed 2.45g. The residue was then ignited

at 750°C for half an hour and weighed after cooling, constant weight of 0.101 g was obtained. Calculate % Moisture content and % Ash in this sample of coal.
c) Draw a well labelled diagram of electromagnetic spectrum showing various

c) Draw a well labelled diagram of electromagnetic spectrum showing various regions.

4

Time: 3-hour 00 minutes

Max. Marks: 60

General Instructions:

- I) Solve any four questions
- II) Figure indicates full marks
- III) Use First angle method of projection.
- Q1. a. A circle of 40 mm diameter rolls on a straight line without slipping. Draw the curve traced out by a point P on the circumference for one complete 6 revolution of the circle. Name the curve. Draw a tangent to the curve at a point on it 35 mm from the directing line.
 - b. Figure 1 shows a pictorial view of an object. Draw the following views: i) 9
 Front view ii) Top view and Dimensions.

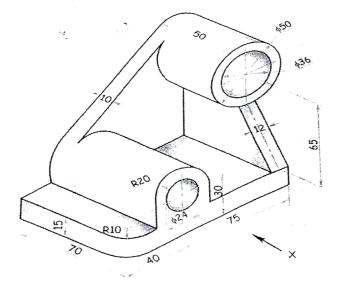


Figure 1

Q2. Figure 2 shows isometric view of a machine component. Draw following views
(i) Sectional F.V. looking in the direction X. (Section A-A) (ii) R.H.S.V.

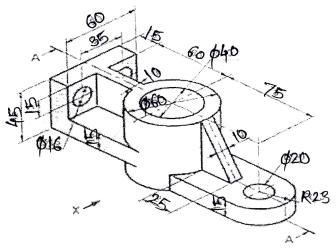


Figure 2

- A cone of base 60 mm diameter and axis 66 mm long is lying on one of its ¹⁵ generators on the V.P. with its F.V. of an axis making an angle at 50° with the H.P. Draw its projections considering the apex nearer to observer.
 - Q4. a. A square prism side of base 40 mm and axis length 60 mm is kept on 6 the HP. On a corner of its base such that its axis makes an angle 30 degree to HP. Draw the projection of Prism.

9

FE Sem-II All Branches R-19 Cocheme

Paper / Subject Code: 29714 / Engineering Graphics

b. Draw Isometric view for following Figure 3 Orthographic Views of component.

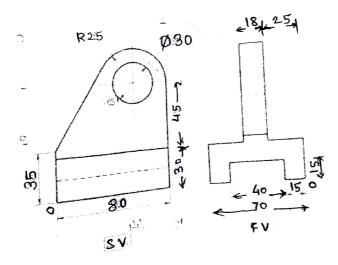
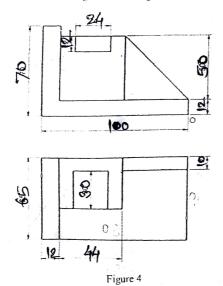



Figure 3

- Q5. A hexagonal pyramid base 30 mm side, axis 65mm long has its base on 15 H.P. with an edge of base parallel to V.P. A section plane perpendicular to V.P. and inclined at 60° to H.P. bisects the axis of the pyramid. Draw front view, sectional top view and true shape Of the section.
- Q6. a. A line AB, 70 mm long is inclined at an angle of 45° to the H.P. and 30° to 9 the V.P. Its end point 'A' is on the H.P. and 25 mm in front of the V.P. Draw the projections of the line AB assuming it to be in the first quadrant. (Four locus are 4 marks & TL, PL, EL are 5 marks)

b. Draw the isometric view of the given view Figure 4.

Paper / Subject Code: 29715 / C Programming

apcode: 83624

FE sem-II All Branches R-19 Cscheme

Time: 2 hour

Max. Marks: 60

NB: 1) Question No.1 is compulsory.

2) Attempt any three questions from question no. 2 to 6.

Q1 Solve any Three out Five of the following (5 marks each)

(15 marks)

- A. Write an algorithm and draw flowchart to find the roots of quadratic equation.
- B. Write a C program to find frequency of characters in a string.
- C. Difference between Structure and Union.
- D. Write a program to check whether given year is leap year or not.
- E. What are logical operators in C.

Q.2 (15 marks)

A. What is Recursion? Write a program to display factorial of number using recursion. 6M

B. Difference between while loop & do-while loop 4M

C. Explain basic data types in C along with their sizes and ranges 5M

Q.3 (15 marks)

A. Write user defined functions to implement following string operations

i Streat ii. Strlen

B. Explain bitwise operators with example.

4M

5M

C. Write a program to print the following pattern. (Note- Not only 4 lines, it should print N 6M lines taken from the user.)

A B B C C C D D D D.

(15 marks)

A. Explain switch case and if else ladder with example. 5 M

B. Write a program in C to find the smallest of N elements using an array. 5 M

C. Write a program to check whether a string is palindrome or not.

5M

(15 marks) Q.5 A. A hospital needs to maintain details of patients. Details to be maintained are, First name, Middle name, Surname, Date of Birth, Disease. Write a C program which will print the list of all patients 6 M with given disease. **B**. Explain the need of Function Prototype with example. 4M- C. Give the difference between entry and exit controlled loop with an example. 5M (15 marks) Q.6 6MA. Write a program to find transpose of a matrix. 5M B. Write a program to print following star pattern. C. What is an algorithm? Explain properties of an algorithm. 4M

FE Sem-II All Branches R-19 Cscheme

apade: 10078780 **Total Marks: 40 Duration: 2 Hours**

Instructions: Question number 1 is compulsory.

Attempt any three from Question No.2 to 6 The figures to the right indicate full marks.

Answers to the sub-questions should be grouped together

(10)

Q1. Answer the following questions. (Any 5)

- a) Write any two merits and demerits of written communication.
- b) Define barrier in communication. List any two types of barriers.
- c) What is grapevine communication? Give suitable examples.
- d) State the advantages and disadvantages of horizontal Communication
- e) Explain the importance of feedback in communication process.
- f) Explain gustatory communication with examples.

Q2. Answer the following questions: a) "You recently purchased a DSLR camera from an online store. Upon receiving the package,

you noticed that the camera was damaged. Write a formal letter of complaint to the customer service department of the online retailer, requesting a replacement or suitable compensation.

- b) What are the elements of communication? Explain the process of communication with the help of a neat labelled diagram.
- Q 3. a) Identify the errors in the following sentences and rewrite the correct ones. (5)
- i) The book is kept over the table.
- ii) The sun rises in the east is an universal truth.
- iii) Neither Jay nor I were able to complete the work.
- iv) Each of the bottles are empty.
- v) I reached the park a hour early.
- b) Explain psychological barriers. How can they be overcome? (5)
- Q 4. a) What are the features of an effective E-mail? (5)
- b) What is proxemics? Explain the four zones. (5)
- (10)Q. 5 Answer the following questions:
- a) Identify the barrier in the following sentences: i) A foreign tourist struggled to communicate effectively with an Indian resident due to
- language differences.
- ii) A successful businesswoman refused to consider the sales pitch of a salesman promoting a newly launched product.
- iii) Jaydeep interrupted Srushtee, asking her to stop narrating a story because he was feeling sleepy.
- iv) An email was drafted and the 'SEND' button was clicked, but the message failed to send due to a server outage.

b) Explain any four Cs effective written communication.

(4)

c) Write a short note on "You Attitude".

(2)

Q 6. a) Read the following passage and answer the questions given below:

Discipline, precisely, means to act in life according to certain rules or norms of society. Primarily, these rules relate to our social code of conduct. Discipline demands a strict control over man's sense of freedom, which if unchecked, may bring disorder and anarchy in the normal life of a country. Hence, discipline has to be true.

Nature is the best mirror of perfect discipline to all of us. Every object in nature moves according to a strictly regulated plan. One can easily notice a perfect order prevailing in the movement of the Sun, the Moon and the other planets. Seasons change according to a certain plan. Tides in the oceans, crops in the fields, animals in the forest, all follow a certain pattern which is extremely essential to sustain life.

There is hardly any sphere of life in which the value of discipline is not realized sooner or later. Life in a house or an office just becomes a mess if a proper sense of discipline is not cultivated among its members. In our social life also certain norms of behavior are necessary to maintain smooth running of the social order. People must demonstrate a sense of discipline even in the small things like boarding buses and trains, buying cinema tickets or even consumer goods. It saves time and work is done easily and quickly. In the political life of a nation, discipline is its backbone. A disciplined nation is definitely better placed in all respects than an undisciplined one which can hardly make any progress.

(5)Questions:

- i) What does discipline demand?
- ii) What will happen if there is no discipline in a house or an office?
- iii) How is discipline advantageous?
- iv) Give antonyms of: a) perfect b) essential
- v) What is discipline?

b) Write the user instructions for operating a washing machine.

(5)

QP. Code; 10083956

4

5

6

6

FR Sam-II NEP 2020 All branchel

Marks: 60 Time: 2 Hours

- Note: 1. Question No. 1 is Compulsory.
 - 2. Attempt any 3 Questions from the remaining questions.
 - 3. Scientific Calculator is allowed to use

	-). Defenine Calculator is another to also	
Que. 1	a.	r = 0.06 given	3
	b.	$\frac{dy}{dx} = x - y^2$; $y(0) = 1$ take $h = 0.02$.	3
	c.	Evaluate: $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$	3
	d.	Evaluate $\int_0^\infty x e^{-x^4} dx$	3

- e. Evaluate: $\int_{0}^{1} \int_{0}^{x} (x^{2} + y^{2}) x \, dy dx$. 3 f. Solve $\left(\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 4y\right) = 0$
- 4 Que. 2 a. Solve $\frac{dy}{dx} = x + 3y$ with $x_0 = 0$, $y_0 = 1$ by Euler's modified method for x = 0.05 correct to three places of decimals.(in one step) 5 b. Evaluate $\int_0^{\pi/6} \sin^2 6x \cos^3 3x dx$. 6
 - c. Use method of variation of parameters to solve the differential equation $(D^2 + 3D + 2)\gamma = e^{e^x}$
- 4 a. Evaluate $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r \, dr d\theta$. Que. 3 b. Solve the differential equation $(x^4 + y^4)dx - xy^3dy = 0$ 5 6 c. Solve $\frac{dy}{dx} = x^3 + y$, x = 0, y = 2 by Runge-kutta method of 4th order for
- a. Solve $(D^2 + 4)y = x^2 + 1$ Find the mass of the lamina bounded by the curves $y^2 = x$ and $x^2 = y$ if the density of the lamina at any point varies as the square of its distance from origin.
 - c. Solve $x \frac{dy}{dx} + y = x^3 y^6$
- 4 a. Prove that $\int_0^1 \frac{x^{\alpha-1}}{\log x} dx = \log(1+\alpha)$, $\alpha \ge 0$. Que. 5 b. Find by double integration the area inside the circle $r = a \sin \theta$ and outside the 5 cardioid $r = a(1 - \cos\theta)$. 6
 - c. Evaluate by changing into polar coordinates $\int_{0}^{1} \int_{0}^{\sqrt{2x-x^{2}}} (x^{2} + y^{2}) dy dx$
- a. Solve the differential equation $(D^2 4D + 4)y = e^{2x} \sin 2x$ Oue. 6 5 b. Change the order of integration $\int_0^1 \int_0^{\sqrt{1-x^2}} f(x,y) dy dx$.
 - c. Find the approximate value of $\int_0^6 e^x dx$ by using (1)Trapezoidal Rule
 - (2) Simpson's (1/3)rd rule and

FE sem-II NEP-2020 All Branches

Paper / Subject Code: 10522 / Engineering Graphics

Time: 3 Hours

Max. Marks: 60

General Instructions:

- 1. Question number 1 is compulsory
- 2. Attempt any three questions from the remaining five questions.
- 3. All dimensions are in mm.
- 4. Use first angle method of projection.
- 5. Assume suitable dimension if it is necessary.
- Q.1. Solve ANY ONE questions from following.
 - a Draw the involute of a circle, 40 mm in diameter, Also, draw the tangent and normal at a 69 point on the curve at a distance of 100 mm from the center of the circle.
 - b. A square lamina of 50 mm side rests on one of its corners on the HP, and the sides containing the corner make equal angle with HP. The surface of lamina makes 45° to the HP. Draw the TV and FV of the lamina.

OR

Q.1. a Fig.1 shows the two views of an object. Draw the isometric view assuming the origin as -08 suitable corner.

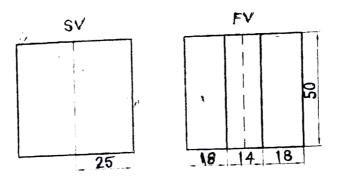


Fig 1: FV and SV of an object

- b A hexagonal prism with a base side of 25 mm and an axis length of 70 mm is resting on the 07 HP on one of its rectangular faces. Draw its projections when its axis is inclined to VP at 45°.
- Q.2. A Pentagonal pyramid of 35 mm side of base and 75 mm height is resting on the HP with 15 one of its triangular surface perpendicular to the HP, and parallel and nearer to the VP. Draw the projections.

85856

Page 1 of 4

X403YF6CBF9X403YF6CBF9X403YF6CBF9X403YF6CBF9

Paper / Subject Code: 10522 / Engineering Graphics

Q.3. Draw the sectional FV, TV and LHSV of an object shown in fig 2. Also give overall 15 dimensions.

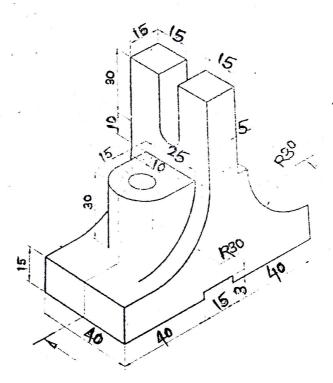


Fig 2: Pictorial view of an object

Q.4 A tetrahedron of 55 mm long edges is lying on the H.P. on one of its faces with an edge of that face perpendicular to the V.P. It is cut by a section plane perpendicular to the both H.P. and V.P. in such a way that the true shape of a section is an isosceles triangle of 36 mm height. Draw elevation, plan and end view when the major part of an object is assumed to be retained.

85856

Page 2 of 4

X403YF6CBF9X403YF6CBF9X403YF6CBF9X403YF6CBF9

Q.5. a. Fig 3 shows a pictorial view of an object. Using first angle projection, draw front view and top view. Give at least 10 dimensions.

09

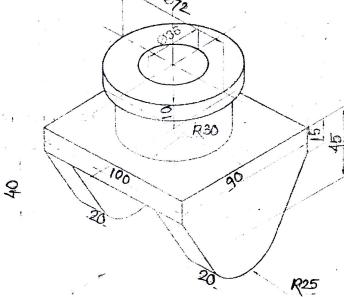


Fig 3 Pictorial view of an object

85856

Page 3 of 4

X403YF6CBF9X403YF6CBF9X403YF6CBF9X403YF6CBF9

Paper / Subject Code: 10522 / Engineering Graphics

b. Fig 4 shows FV and SV of an object. Draw isometric view. The origin may be assumed at 06 a suitable corner.

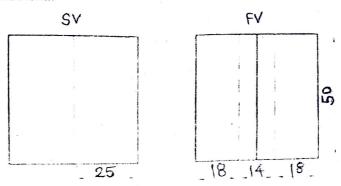


Fig 4: FV and SV of an object

- Q.6 a. A straight-line PQ equally inclined to the VP and the HP, has its end P in front of the VP 08 and 20 mm above the HP. End Q is behind VP and 10 mm below HP. Draw the projections, true length of line and inclination of line with HP, if distance between projections of the ends is 60 mm.
 - b. A wheel of diameter 60 cm rolls on a straight horizontal line. Draw the locus of a point P 07 on the periphery of the wheel, for one revolution of the wheel, if P is initially on the road.

85856

Paper / Subject Code: 10523 / Data Structure ap code: 10083633 sem-II (Comp | AIML (IOT | AIDS) NEP-2020 **Duration: 2 hrs** [Max Marks:60] N.B.: (1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five. (3) All questions carry equal marks. (4) Assume suitable data, if required, and state it clearly. 1 Attempt any THREE [15] Explain linear and nonlinear data structures with suitable examples. [5] [5] Define ADT. Write ADT for Queue data structure. [5] Differentiate between Linked List and array. [5] d Write an algorithm for reversing a string. [8] 2 Write an algorithm to implement Stack using an array. [7] Write a algorithm to reverse the singly linked list. [8] 3 Write a algorithm to implement circular queue using an array. Design a Huffman tree for the word "CONSTRUCTION". Also write the Huffman [7] code to represent each symbol. [8] Construct a Binary Search Tree for given numbers 45, 23, 76, 11, 30, 60, 90, 25, 50, 4 [7] Write an algorithm for infix to postfix conversion. Convert the following b expression to postfix (A + B) * C - D / EWrite an algorithm to implement singly linked list that performs the following [8] 5 functions 1. Insert a node in the beginning 2. Insert a node in the end 3. Display the linked list elements Draw the Stack structure for each case when the following operations are [7] performed on an empty stack.

1. PUSH A, B, C, D, E, F 2. POP two letters

3. PUSH G

4. POP one letter

5. POP four letters

6. Pop one letter

7. PUSH I, J

8. POP one letter

[15]Write short notes on (any 3) 6 [5] a) Doubly Linked List [5] b) Double Ended Queue [5] c) Types of Binary Tree [5] d) Priority Queue

apcode: 10086389

FE sem-II Electrical NEP-2020

Duration 2hrs	Total Marks 60

NB:	2) A	Question No. 1 is Compulsory. Attempt any three Questions out of remaining five Questions. Assume suitable data if necessary and justify the same.	
Q1.	A) B) C) D) E) F)	what is BMS List the advantages of Hydro power plant Define the unit used in consumption of energy. List the importances of measurement in electrical power system. Write the power rating of PC, Laptop, Printer Enlist the types of generations	3 3 3 3 3
Q2 Q2	A) B)	Explain various types of transmission lines in power system Explain Lithium-Ion battery with charging and Discharging characteristic	8
Q3	A)	Compare single circuit and double circuit of 3 phase line	7
Q3	B)	Explain industrial, residential and commercial loads with suitable application	8
Q4 Q4	A) B)	Discuss the Thermal power plant with block diagram Explain PMMC type of instruments with detail diagram	8
Q5 Q5	A) B)	Write the short note on electric heating & welding Explain the structure of power system with the diagram showing different voltage levels of Transmission, distribution and utilization	8
Q6 Q6	A) B)	Explain the various types of Battery storage along with suitable applications A single-phase overhead line is transmitting 1200 KW Power to a factory at 11 KV and 0.8 lagging power factor. Total resistance and reactance is of the line is 3 ohm and 4.5 ohm respectively determine 1) sending end	8

voltage 2) % regulation

FE sem-II Mechanical NEP-2020

DURATION: 2 HOURS:

MAX MARKS: 60

Instructions:

- 1. Question No 1 is Compulsory.
- 2. Attempt any 3 out of remaining 5 Questions.
- 3. Each Question carry 15 Marks

Q.NO	Attempt any five	Marks	BL	CC
. 1	a) Define the term prime mover and State its two example.	3	R	1
	b) Differentiate between S.I Engine and C I Engine	3	R	2
	c) Show with a diagram the arrangement of driver and driven pulleys, tension side, slack side in a simple belt drive.	3	R	3
,	d) Discuss the properties of air that must be controlled during the air conditioning process	3	U	4
	e) Define a shaft and an axle, and State the functional difference between them.	3	R	5
	f) Discuss working of different components of robotics.	3	U	6
2	a) Explain various application of mechanical engineering.	4	U	1
2	b) Show control volume and the types of boundaries in the given piston-cylinder diagram.	4	U	2
1	c) Explain Stroke volume, clearance Volume and Total Volume with respect	7	U	2
	to Reciprocating I C engine with a neat sketch			u.
3	a) Identify types of power cycle consists of following 1. Two constant volume process.	4	U	2
	2. One constant volume and one constant pressure.			
	3. Two constant pressure process			
	4. Two adiabatic and two isothermal process			_
	a) State the types of gear used in gear drive with a neat sketch.	4	R	3
	b) Explain salient features of belt drive power transmission system	7	U	3

4	 a) Draw a Automobile layout showing all the parts. b) Write a note on Rear wheel drive. Give example a) Discuss on any one Indian Hybrid Electric Vehicle/Electric Vehicle. 	4 4 7	R U U	5 5 5
5	 a) Differentiate between Augmented Reality and Virtual Reality. b) Write a note on Automation c) Explain working of refrigeration process with a neat-labelled diagram. 	4 4 7	R R U	6 6 4
6	a) Define air conditioning process and State types of air conditioning process used in summer and winter season respectively.	4	U	4
	b) State the law that forms the basis of temperature measurementc) Discuss slip phenomenon in the belt drive.	7	U	3

Paper / Subject Code: 10552 / Elective : Semiconductor Physics

QP code: 10085367

FE Sem-IT comp/AIML/Mech/Elect/AIDS NEP-2020

Duration: $1\frac{1}{2}$ hour

Max. Maks: 45

Note: 1. Question No. 1 is compulsory.

2. Solve any two questions from the remaining.

3. Draw diagrams where ever necessary.

Q.1. Solve any five from the following.

 (3×5)

- a) The resistivity of Cu is 1.72×10^{-8} ohm-m. Calculate the mobility of electrons in Cu. Given that Number of electrons per unit volume is 10.41×10^{28} /m³.
- b) How does biasing influence the operation of a BJT in its different regions?
- c) Determine the value of R_s required to self-biased a p-channel JFET with $I_{DSS} = 25$ mA, $V_{GS(OFF)} = 15$ V and $V_{GS} = 5$ V.
- d) Explain the importance of surface to volume ratio in nano-technology.
- e) Calculate the junction capacitance of a Ge diode whose area is 1 mm \times 1mm and depletion region width is 2 μ m. The relative permittivity of Ge is 16. Permittivity of free space is 8.54×10^{-12} F/m.
- f) Differentiate betweer Enhancement Type and Depletion Type MOSFET.
- g) Determine the wavelength and colour of light emitted by GaP LED of $E_{\rm g}$ = 2.25 eV.

0.2. (5×3)

- a) Deduce the expression for collector current and characteristics of NPN transistor in CB mode.
- b) A sample of n-type of silicon has a donor density of $10^{20}/\text{m}^3$. It is used in the Hall effect experiment. If the sample of the width 4.5 mm is kept in a magnetic field of 0.55 T with current density of 500 A/m², find (i) Hall voltage developed in it (ii) Hall Coefficient (iii) Hall angle mobility of electrons is 0.17 m²/V-sec.
- c) Illustrate the working and arivantages of Photodiode.

 $Q.3. (5\times3)$

a) Derive the expression for barrier potential of a p-n junction diode.

- b) Explain working principle and output characteristics of the N-channel Enhancement type MOSFET.
- c) Explain the effect of particle size on photoluminescence and electrical properties of nano materials.

Q.4. (5×3)

a) Define Fermi level. Explain and locate the shifts in Fermi level with increase in temperature in n- type semiconductor.

b) Silicon diode is subjected to a forward voltage of 0.7 V at room temperature 27 °C with a saturation current of 10⁻¹² A. Calculate the forward current assuming and ideality factor of 1.

c) Compare between FET and BJT.

 $Q.5. (5\times3)$

- a) Explain the application of Transistor as a switch in cut-off and saturation action.
- b) Explain the working of a Zener diode and its application.
- c) Explain electron beam lithography with key steps involved in the process and give its applications.

Page 1 of 1

85367

Paper / Subject Code: 10553 / Elective: Physics of Measurements and Sensors

FE Sem-II (SE (IOT) NEP-2020

apcode: 10085097

[5M]

Marks: 45 Duration: 1 ½ Hr Note: (1) Q.1 is compulsory (2) Attempt any two from remaining (3) All Questions are of 15 marks. [15M]O.1 Attempt any five (a) Define the term Calibration. Write 2 points regarding its significance in measurements. (b) Justify the statement: "Concept of Interference yields better results when employed as measuring Instrument" (c) Fill in the gap: Full form of LVDT is Linear Variable _____Transformer. It works on the principle of _____. It measures______ (d) Draw the diagram to measure Hall Voltage of a semiconductor slab. Clearly indicating width "w", thickness "t", current "I" passing through it and Applied Magnetic field Intensity B Tesla. (e) Describe Seebeck effect .What is the approximate range of potential difference it generates? (f) Assuming that atoms are perfect spheres of radius R, Write the expression of Surface to volume ratio. Also find the surface to Volume ratio if the atom is a perfect cube with edge "s" (g) Write three points as the comparison for Accuracy and Precision. Q.2 (a) In an experiment to find Resistance a student performed it for five times and the results are 38Ω , 51Ω , 46Ω , 79Ω , 57Ω . Find the standard Deviation. [5M] (b) Apply the knowledge of monochromatic light in interference and explain its application to [5M] determine the flatness of the surface. (c) Draw neat diagram and explain how LVDT works [5M] Q.3 (a) Using a neat diagram, Derive the expression that measures Hall Voltage for a semiconductor under the magnetic field intensity B Tesla. [5M] (b) Write the formula that can explain variation of Resistance with respect to temperature. Sketch the variation of Resistance with respect to temperature in case of material with (1) Positive temperature coefficient (2) Negative temperature coefficient [5M]

(c) Apply the knowledge of optical microscope to determine its limitation to study nano particles. Explain Transmission Electron Microscope (TEM) works in study of nano

particles.

Q.4 (a) A straight line is to be drawn using x and y coordinates as mentioned below. Using the concept of least square fit find the equation of straight line. [5M]

X	1	2	3	4	5	6	7	8	9
Y	4	7	8	11	12	15	17	21	20

- (b) Define (1) Transducer (2) Piezo electric effect. How Piezo electric Transducer works? Write at least three applications of Piezo electric Transducer. [5M]
- (c) What is heat? Write at least two points as the difference between heat and Temperature. Explain the use of Bimetallic thermometer for measurements of temperature. [5M]
- Q.5 (a) Explain why optical interferometry is one of the best concept for testing the flatness of a surface? [5M]
 - (b) A sample of a n-type Silicon has a donor density of 10 ²⁰ /m ³. It is used in the Hall effect experiment. If the sample of width 4.5 mm is kept in a magnetic field of 0.55T with current density of 500 A/m ². Find Hall voltage developed. [5M]
 - (c) Draw the neat diagram and explain how AFM works.

[5M]

Paper / Subject Code: 10557 / Engineering Materials

RP code: 10085230

Max. Marks: 45

FE sem-II All Branches NEP-2020

Time: 1hr and 30 min

NOTE: 1) Question No.1 is compulsory.

		 Attempt any two questions from the remaining four questions. Figures to the right indicate the marks allotted to that question. Draw well-labelled diagrams wherever necessary. Assume suitable data wherever necessary. 	
Q!.	(a)	Answer any five of the following: An alloy consists of 70% copper (Cu) and 30% zinc (Zn) by weight. (Density of copper = 8.96 g/cm ³ , Density of zinc = 7.14 g/cm ³). Calculate the density of the alloy.	15
	(b) (c) (d)	What are ceramics? State the properties and uses of any one type of Natural Ceramics. What are the emerging applications of biocomposites? Explain the synthesis of PMMA and discuss its properties. Mention at least two important	
	(e)	uses Define Liquid Crystal Polymer and explain how its properties make it useful in electronics or automotive industries.	
	(f) (g)	What are carbon nanotubes? Differentiate between Single-Walled and Multi-Walled Carbon Nanotubes. A polymer fiber with a cross-sectional area of 5 mm ² is subjected to a force of 125 N before failure. Find the tensile stress at the point of failure.	
Q2	(a)	Define optical fibers and explain their construction with a labeled diagram and write any two applications of it.	6
	(b)	Explain the structure and unique properties of graphene. Give any two applications of nanomaterials in the medicinal field.	5
	(c)	Define smart polymers. Discuss their important characteristics and list some of their applications.	4
Q3	(a)	Define compounding of plastics. What is the significance of each component added during compounding? Explain their roles with examples.	6
	(c)	Explain the various types of Particulate reinforced composite? Mention their applications. Explain the properties and uses of Borosilicate and Soda-lime glass.	5 4
Q4	(a)	State the composition, properties and uses of i. Dutch metal ii. Woods metal	6
	(b) (c)	Explain classification of various types of nanostructured materials in detail. Calculate the Degree of Polymerization of a polystyrene molecule with a molecular weight of 150,000 g/mol, given that the molecular weight of a styrene monomer is 104 g/mol.	5
Q5	(a)	Define Composite. Explain properties and application Biocomposite.	6
	(b)	 i. State the effects of the Co and W elements on special steels. ii. An alloy is made of 60% iron (Fe) and 40% carbon (C) by weight. Calculate the atomic percentage of each element in the alloy. (Given: Atomic mass of Fe = 55.85 g mol. Atomic mass of C = 12.01 g/mol) 	3
	(c)	What are conducting polymers? Explain Intrinsic polymer in detail with example.	4