Paper / Subject Code: 51624 / Material Metallurgy

SELSEM III C-Scheme R-19/ Mechanical

Time: 3 Hour

### N. B.

1) Question No.1 is compulsory.

2) Attempt any three questions from remaining five questions.

3) All questions carry equal marks.

### Q1. Write notes on any FOUR

- Explain the advantages of polymer over metallic materials. (a)
- (b) Allotropic form of iron
- Critical Resolved Shear Stress (C.R.S.S.) (c)
- (d) Ductile to Brittle Transition Temperature (DBTT)
- (e) Normalizing
- Q2. (a) Classify various types crystal defects? Discuss line defects and their [10] types.
  - (b) State and explain Griffith's theory for brittle material with derivation [10]
- Q3. (a) Draw the iron -iron carbide equilibrium diagram and write the important [10] transformation seen in the diagram.
  - (b) What is Nitriding and explain types of nitriding processes. Explain the [10] heat treatment before nitriding.
- What is recrystallization annealing? Discuss the various stages of Q4. (a) [10] recrystallization annealing with neat sketch
  - Define fatigue failure. Discuss fatigue testing. Explain interpretation of (b) [10]S-N curve for ferrous and non –ferrous metals.
- Draw a binary alloy phase diagram with example. Q5. [10] (a) Write note on Shape Memory alloys (b) [6] Explain ceramics and its applications. [4] (c) Write note on composites and its applications. [8] **O6**. (a) Explain Magnetic Particle Testing with neat sketch [8] (b) [4]
  - Define nano materials. Discuss their applications. (c)



ФР-10070569 14112124 Max. Marks: 80

[20]

Paper / Subject Code: S1625 / Froduction Process

SE Saron III

Duration: 3 Hours

OTH R-19 C SCH25DE Mechanical 3 Hours II Mechanical PP Total Marks-80 1) First Question (Q.1) is Compulsory. 31/11/4 2) Attempt any 3 questions from the mark to the second se

- 2) Attempt any 3 questions from the remaining 5 (Q.2 Q.6) questions.
- 3) Figures to the right indicate full marks
- 4) Proportionate and labelled free-hand sketches would do
- Q. 1 Solve any Four out of Six.
  - a) Explain shell moulding process
  - b) Explain adhesive bonding process.
  - c) Write short note defects in rolling process.
  - d) Explain Internet of Things.
  - e) Discuss Laser beam machining process.
  - f) With the help of neat sketch explain working of compound die.

| Q. 2 a) | What is riser? Write the functions of risers. List types of risers and explain any  | 10  |
|---------|-------------------------------------------------------------------------------------|-----|
| b)      | one.<br>Evaluin working oxy-acetylene gas welding. Sketch three types of flames and | 5.0 |

- Explain working oxy-acceptence 10 write its uses.
- Q. 3 a) Explain working, advantages and limitations of electro-discharge machining. **i 0** b) Define extrusion process. With the help of neat sketch write the difference 10 between direct extrusion and indirect extrusion.

| Q. 4 a)<br>b)<br>at a<br>are<br>V,1                     | Explain construction and working of centre lathe.<br>The tool life equation for machining C40 steel with a 18:4:1 H.S.S. cutting tool<br>a feed of 0.2mm/min and depth of cut 2mm is given by $VT^n = C$ , where n and C<br>constants. The following observations have been noted :<br>m/min 25 35 | 10 |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| T, i<br>Cal                                             | min 90 20<br>Iculate n and C.                                                                                                                                                                                                                                                                      | 10 |
| O. 5 a) Explain the various steps in powder metallurgy. |                                                                                                                                                                                                                                                                                                    | 10 |
| b)                                                      | Write the classifications of sheet metal operations. Explain any loth sheet metal operations with neat sketch.                                                                                                                                                                                     | 10 |
| Q. 6                                                    | Write short notes on (Any four)                                                                                                                                                                                                                                                                    | 20 |

- a) Write the difference between shaper and planer.
- b) Classify Production Processes.
- c) Write the difference between hot working and cold working.
- d) Laser beam machining.
- c) Gear hobbing.
- f) Cloud manufacturing.

\*\*\*\*\*\*



20

10

Paper / Subject Code: 51625 / Thermodynamics

Rp code; 10068831

20

10

| S      | E sem-III Mechanical R-19 Cscheme                                                                         |
|--------|-----------------------------------------------------------------------------------------------------------|
| U      | III/ Mechanical / T.D.                                                                                    |
|        | Time : 3 Hours $2.5/11/2024$ Total Marks:80                                                               |
| N.B. : | (1) Question No 1 is Compulsory.                                                                          |
|        | (2) Attempt any three questions out of the remaining five.                                                |
|        | (3) All questions carry equal marks.                                                                      |
|        | (4) Assume suitable data, if required and state it clearly.                                               |
|        | (5) Use of steam table and Mollier Diagram is permitted.*                                                 |
|        |                                                                                                           |
| 1      | Solve Any Four                                                                                            |
| а      | State Perpetual Motion Machine (PMM) - I & II.                                                            |
| b      | State the similarities and dissimilarities between heat and work transfer.                                |
| С      | Define the following term,(ii)Saturation temperature(ii)Sensible heat(iii)Critical point(iv) Triple point |

Discuss the Mach number corresponding to е

Draw P-V and T-S diagram of Otto cycle and Brayton cycle.

Subsonic flow (i)

(iii) Critical point

·d

- (ii) Sonic Flow
- (iii) Supersonic flow
- In a gas turbine, the gases flow at the rate of 5 kg/s. The gases enter the turbine 10 2 а at a pressure 7 bar with a velocity 120 m/s. The turbine is insulated. The exit pressure and velocity are 2 bar and 250 m/s. If the enthalpy of the gas at the inlet is 900 kJ/kg and at the outlet is 600 kJ/kg, determine the capacity of the turbine.
  - Discuss generation of steam from ice at  $-5^{\circ}$ C at 1 atm with the help of T–S and 10 b P-V diagrams.
- A heat pump working on a Carnot cycle takes in heat from a reservoir at 5 °C 3 a and delivers heat to a reservoir at 60 °C. The heat pump is driven by a reversible heat engine which takes in heat from a reservoir 840 °C and reject heat to a reservoir at 60 °C. The reversible heat engine also drives a machine that absorbs 30 kW. If the pump extracts 17 KJ/s from the 5 °C reservoir, Determine
  - the rate of heat supply from 840 °C source and (i)
  - the rate of heat rejection to the 60 °C sink. (ii)

### Page 1 of 2

# Paper / Subject Code: 51625 / Thermodynamics

|   | h | Explain the concept of available and unavailable energy. When does the system    | 05 |
|---|---|----------------------------------------------------------------------------------|----|
|   | U | become dead state?                                                               |    |
|   | с | Describe reheat cycle and compare it with simple Rankine cycle.                  | 05 |
|   |   |                                                                                  |    |
| 4 | а | Derive the Clausius theorem.                                                     | 10 |
|   | b | Write the equations of Maxwell's Relations.                                      | 05 |
|   | с | During a thermodynamic cycle of processes (A-B-C-D-A), the heat transferred      | 05 |
|   |   | during each process are: 120 kJ, -16 kJ, -48 kJ and 12 kJ respectively. Estimate |    |
|   |   | network transferred during the thermodynamic cycle, direction of work transfer,  |    |
|   |   | change in internal energy using the first law of Thermodynamics.                 |    |
|   |   |                                                                                  |    |
| 5 | а | Derive the expression of efficiency of Diesel cycle and state the assumptions.   | 10 |
|   | b | Steam turbine working on Rankine cycle is supplied with dry saturated steam at   | 10 |
|   |   | 20 bar and the exhaust takes place at 0.3 bar. For a steam flow rate of 10 kg/s. |    |
|   |   | Determine the quality of steam at end of expansion and Rankine efficiency,       |    |
|   |   |                                                                                  |    |
| 6 | а | An aeroplane is flying at 1000 km/h through still air having a pressure of 78.5  | 10 |
|   |   | $kN/m^2$ (abs.) and temperature – 8°C. Calculate on the stagnation point on the  |    |
|   |   | nose of the plane : (i) Stagnation pressure, (ii) Stagnation temperature,        |    |
|   |   | (Take for air : $R = 287 \text{ J/kg K}$ and $\gamma = 1.4$ )                    |    |

b In an air standard diesel cycle, the compression ratio is 15 and the properties at 10 the beginning of compression are 100 kPa and 300 K. For a peak temperature of 1600 K, Calculate the percentage of stroke at which cut- off occurs and the cycle efficiency

\*\*\*\*\*

68831

Paper / Subject Code: 51622 / Strength of Materials

II Mechanical Total Marks: 80

SE sem-III<sup>rd</sup> R-19 C Scheme Mechanical

**3 Hours** 

- Question-1 is compulsory. 8
- Answer any three from remaining five questions. a
- Assume any suitable data, wherever required, but justify the same. Assumptions made should be clearly stated.
- Illustrate the answers with sketches, wherever required. \*
- Answer any four of the following: 1
  - a. A material has Young's modulus of  $2 \times 10^5$  N/mm<sup>2</sup> Poisson's ratio of 0.32, determine rigidity (05) and Bulk modulus of the material.
  - b. A rectangular beam 300mm deep is simply supported over a span 4m. What uniformly (05) distributed load the beam can carry if the bending stress is not to exceed 120MPa. Take I  $=8 \times 10^{6} \text{ mm}^{4}$ .
  - c. A water main 800mm diameter contains water at a pressure head of 100m. If the weight of (05)water 10kN/m3, find the thickness of metal required for the water main if permissible stress in metal is 20N/mm<sup>2</sup>.
  - d. State the assumptions made in the analysis of struts and columns by Euler's buckling theory. (05)
  - e. Draw shear stress distribution for I section, T section and rectangular/section. (05)
  - f. Establish the relationship between shear force, bending moment and rate of loading. (05)
  - 2 a) A solid circular shaft has to transmit 300 kW power at 100 rpm. If the shear stress is not to (10)exceed 80 N/mm<sup>2</sup>, find the diameter of the shaft. If this shaft were replaced by a hollow one whose internal diameter is 0.6 of its external diameter, What will be the % of saving of material. The length, material and shear stress are kept same.
  - 2 b) A composite bar is made of Steel and Aluminium is held between two supports as shown in (10)fig 1. The bars are stress free at temp 38°C. What will be the stress in the two bars when temperature decreased to 21°C, the supports come near to each other by 0.1mm. Take Es =210 GN/m<sup>2</sup>,  $E_{A1}$  =100 GN/m<sup>2</sup>,  $\alpha_s$  = 11.7×10<sup>-6</sup>/°C and  $\alpha_{A1}$  = 23.4×10<sup>-6</sup>/°C





3 a) A T section (Flange =200mm×10mm, web=10mm×240mm) is used as struts which is 6m (10) long, one end is hinged and other end is fixed. Determine the buckling load using Euler's formula. E=200×10<sup>3</sup> N/mm<sup>2</sup>



#### Paper / Subject Code: 51022 / Strength of Materials

3 b) Figure 2, shows a C section subjected to a shear force of 18 kN intensity. Draw the shear stress distribution diagram across the section and obtain the shear stress values at all the salient points including the neutral axis.



- 4 a) A cylindrical vessel of 1.5m diameter and 4m long is closed at ends by rigid plate. It is (10) subjected to an internal pressure of 3N/mm<sup>2</sup>. If the maximum circumferential stress is not to exceed 150N/mm<sup>2</sup>, find the thickness of shell. Also change in diameter length and volume of the shell. Take E=2×10<sup>5</sup> N/mm<sup>2</sup>, 1/m =0.25
- 4 b) Draw shear force and bending moment diagram for beam shown in fig. 3



- 5 a) The beam has a T-shaped cross-section with a top flange measuring 90 mm × 20 mm and a (10) web measuring 20 mm × 90 mm. The beam is a simply supported on a span of 8m and subjected to 1200N/m over entire span. Determine bending stresses in compression and tension, also sketch the bending stress distribution.
- **5 b)** Find the slope at A and deflection at a point C for the beam loaded shown in fig.4. Assume (10) moment of inertia and modulus of elasticity as  $I=20\times10^6$  mm<sup>4</sup> and E =200 kN/mm<sup>2</sup>.



- 6 a) Two mutually perpendicular plane of an element subjected to  $\sigma_x = 100$ MPa (tensile) and  $\sigma_y$  (10) =40MPa (compressive) and shear stress =30MPa. Locate the principal planes and determine the principal stresses, maximum shear stresses using Mohr's circle verify answers with analytical method.
- 6 b) Determine instantaneous stress and deformation of a rod of length 1.2m and the diameter (10)
  8mm. If a mass of 90kg falls through a height f 15cm and strike the bottom of the rod. The rod is freely suspended and fixed at the top. Take E=210GPa.

66930

(10)

(10)

|            | Paper / Subject Code: 51621 / Engineering Mathematics-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| · •        | apcode : 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65696    |
| SE         | sem-III Mechanical R-19 Cscheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|            | Sert 1 Store 1 - M-ITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|            | (3 Hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|            | Note: 1) Question No. 1 is commuted Total Marks :80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|            | 2) Attempt any Three from the remaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| Q1         | , and found interstore from the remaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| A)         | Find $L\left\{\int_{0}^{t}e^{-u}u^{n}du\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |
| <b>B</b> ) | Prove that $f(z) = e^{z}$ is analytic everywhere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |
|            | Hence find $f'(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| <b>C</b> ) | Find half range sine series of $f(x) = x$ in $(0, \pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        |
| D)         | If A= $[a_{ij}]$ is a matrix of order 3×3 such that $a_{ij} = \{1, i \text{ f } i \neq j\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5        |
|            | $[u_ij]$ is a maxim of order 5.45 such that $u_ij = (0, if i = j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|            | Find an eigen value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|            | i) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a _ 4    |
|            | ii) adjoint of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|            | iii) $A^2 - 2A + 2I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| $Q_2$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>(</i> |
| A)         | If $L[f(t)] = \frac{1}{9s^2 - 3s + 1}$ then Find $L[te^t f(3t)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        |
| D)         | Find Francisco (C. )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>(</i> |
| Б)         | and $f(x + 2\pi) - f(x) = x$ , if $0 < x < 2\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        |
| C)         | Find analytic function $f(z)$ in terms of z where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8        |
| - /        | $u = y^2 - x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0        |
| Q3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| A)         | A string is stretched and fastened to two points distance $l$ apart. Motion is started by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6        |
|            | displacing the string in the form $\sin(\pi t/t)$ from which it is released at time to 0. Show that the displacement of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        |
|            | y-a sin( $\pi x/t$ ) from which it is released at time t=0.5now that the displacement of a point at a distance x from one end at time t is given by $y = a \sin(\pi x/t) \cos(\pi ct/t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| B)         | Prove that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6        |
|            | $u = e^x cosy$ is harmonic function hence find it's harmonic conjugate function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| C)         | Find the Fourier Series for $f(x)$ in $(-\pi, \pi)$ where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8        |
|            | f(x) =  x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| Q4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| A)         | Evaluate $\int_0^\infty \left  \frac{\cos 2t - \cos 4t}{t} \right  dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| B)         | Find Inverse Laplace transform of $\frac{s+1}{(s-1)^2(s-2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6        |
|            | $(s-1)^2(s-2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|            | [2 2 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8        |
| C)         | Is the matrix $A = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$ Diagonalizable? If so find the Diagonal form of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|            | and transforming matrix of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|            | and the second se |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| (=(0)      | Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 05696      | nage 1 01 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |

1

١.

## Paper / Subject Code: 51621 / Engineering Mathematics-III

Q5 6 If  $A = [a_{ij}]$  is a matrix of order  $3 \times 3$  such that A)  $a_{ij} = \begin{cases} 2, & \text{if } i = j \\ -1 & \text{, if } i + j = 3 \text{ or } 5 \\ 1 & \text{, if } i + j = 4 \text{ and } i \neq j \end{cases}$ Compute:  $A^9 - 6A^8 - 9A^7 - 4A^6 + A^5 - 12A^4 - 18A^3 - 8A^2 + 2A + I$ Solve by Crank-Nicholson simplified formula  $\frac{\partial^2 u}{\partial x^2} - 16\frac{\partial u}{\partial t} = 0$ , B)  $0 \le x \le 1$  subject to the condition u(0,t) = 0, u(1,t) = 100t, u(x, 0)=0 h=0.25 for one-time step Find inverse Laplace transform of (i)  $log[z^2 - 4]$  (ii)  $\frac{s+2}{(s+16)^2}$ c) 8 Q6 Find the Laplace Transform of  $\int_0^t \cos(u)\sin(u)du$ A) 6 Find the solution of B)  $4\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0, 0 < x < 8, \quad u(x, 0) = 4x - \frac{1}{2}x^2, u(0, t) = 0, u(8, t) = 0$ Taking  $h = 1, k = \frac{1}{8}$  for  $0 \le t \le 5/8$ Where h is the step length for x axis and k is the step size in time direction

Where h is the step length for  $x \ axis$  and k is the step size in time direction using Bender –Schmidt method

8

C) Find inverse Laplace transform of  $\frac{1}{(s^2+16)((s^2+49))}$  using convolution theorem