Q.P. Code: 37609

(3 Hours) Total Marks: 80

Note:- 1) Question number 1 is compulsory.

- 2) Attempt any three questions from the remaining five questions.
- 3) Figures to the right indicates full marks.
- Q.1 a) Verify Cauchy's Schwartz inequality for the vectors u = (-4,2,1) and v = (8,-4,-2)
 - Show that the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ is non derogatory.
 - c) Let X be a continuous variable with probability density function 05 $f(x) = kx(1-x), 0 \le x \le 1$. Find k and determine a number b such that $P(X \le b) = P(X \ge b)$.
 - d) Evaluate $\int_C (\bar{z} + 2z)dz$, where C is
 - i) The upper half of the circle |z| = 2.
 - ii) The lower half of the circle |z| = 2.
- Q.2 a) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$
 - b) If $f(a) = \int_C \frac{4z^2 + z + 5}{z a} dz$, where C is |z| = 2, find the values of f(1), f(i) f'(-1), f''(-i)
 - c) A random variable X has the following Probability function X: 1 2 3 4 5 6 7 P(X=x): k 2k 3k k^2 $k^2 + k$ 2 k^2 4 k^2 Find i) k ii) P(X < 5) iii) P(X > 5) iv) $P\left(\frac{X < 5}{2 < X < 6}\right)$
- Q.3 a) The equation of the two regression lines are 3x + 2y = 26 and 6x + y = 31. Find i) mean of x and y ii) coefficient of correlation between x and y iii) σ_y if $\sigma_x = 3$
 - b) Fit a Binomial distribution to the following data 06

 X: 0 1 2 3 4 5 6

 Y: 5 18 28 12 7 6 4

Paper / Subject Code: 41101 / Applied Mathematics-IV

	c)	Examine whether the set of real numbers with operations of addition and multiplication defined as $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$; $k(x_1, y_1) = (3kx_1, 3ky_1)$ is a vector space	08					
Q.4	a)	process to $S = \{(3,0,4), (-1,0,7), (2,9,1)\}$						
	b)	A continuous random variable has probability density function $f(x) = kx^2(1-x^3)$ 0 < x < 1. Find i) k ii) mean iii) variance	06					
	c)	Show that the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is diagonalizable. Also find the	80					
		transforming matrix and diagonal matrix.	200					
Q.5	a)	Verify Caley-Hamilton theorem for $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$ Hence	06					
	b)	find A^{-1} Find Karl Pearson's coefficient of correlation and also, the spearman's rank coefficient of correlation for the following data. X: 12 17 22 27 32 Y: 113 119 117 115 121	06					
	c)	Obtain Taylor's and Laurent's series for $f(z) = \frac{z^2-1}{z^2+5z+6}$ around z=0.	08					
Q.6	a)	Evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5+4\cos \theta} d\theta$, using Cauchy's residue theorem	06					
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b)	A random variable X has the following probability density function $f(x) = \begin{cases} ke^{-kx}, & x > 0, k > 0 \\ 0, & elsewhere \end{cases}$ Find m.g.f. and hence find mean and variance						
	c)		08					

Paper / Subject Code: 41102 / Transducers -II

[Time: Three Hours]

2. Attempt any three questions from remaining five questions.

1. Question.No.1 is compulsory.

N.B:

Q.P. Code: 38553

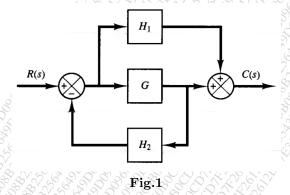
[Marks:80]

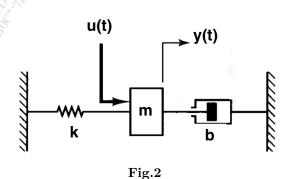
	3. Assume suitable data wherever necessary.	
1	Answer the following a Compare variable head meter with variable area meter for flow measurement. b Explain vena contracta with pressure and velocity profile. c Explain need of temperature compensation for strain gauge sensor. d Define gauge pressure, vacuum and absolute pressure.	20
2	a State and derive Bernoulli's equation. b Explain vacuum measurement using Pirani Gauge.	10 10
3	 a Draw and explain pH measurement set up. b An Orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure difference measured by a mercury oil differential manometer on the two sides of the orifice meter gives a reading of 50 cm of mercury. Find the rate of flow of oil of specific gravity 0.9 when the Cd is 0.64. 	10 10
4	a Explain the working of instrument used for calibration of pressure gauges. b A Wheatstone bridge has R1=120.4 ohm, R2 = 119.0 ohm and R3= 119.7 ohm. What resistance must R4 have for bridge balance? If R4 has a value of 121.2 ohm and if the input voltage is 12 V d.c. what is the output voltage of the bridge assuming it to be voltage sensitive bridge?	
5	a List various techniques of density measurement and explain any two in detail. b Explain pressure measurement using LVDT.	10 10
6	Write short note on any two a Mass flow meter b Dynamometer c Smart sensors	20
9	**********	

Duration: 3 Hours Max. Marks 80

N.B.

- 1. **Q.1** is compulsory. Attempt **any three** from the remaining questions.
- 2. All questions carry equal marks.
- 3. Figures to the Right indicate full marks.
- 3. Assume suitable data if necessary


Q.1 Attempt any four


20

- **a.** For a feedback control system with forward path transfer function G(s) and feedback transfer function H(s), define 'Order' and 'Type' of the system.
- **b.** Define root locus of a system? What is root locus for a system, $G(s) = \frac{K(s+1)}{s+3}$.
- **c.** For a system $\frac{Y(s)}{R(s)} = \frac{1}{(3s+1)}$, obtain unit step response y(t).
- **d.** Determine steady state error in unit step response for the system $\frac{Y(s)}{R(s)} = \frac{2(s+0.1)}{(s^2+0.8s+1)}$
- e. Write difference between open-loop and closed-loop systems.
- **f.** Obtain the poles of the system $G(s) = \frac{1}{s^4 + 81}$ and comment on stability from locations of poles.
- **Q.2 A.** For the following system, compute risetime (t_r) , peak time (t_p) , peak overshoot $(\%M_p)$ and settling time (t_s) for 2% tolerable error in response.

$$G(s) = \frac{1}{s^2 + 1.2s + 1}$$

B. Construct the signal flow graph for system in Fig.1 and obtain the transfer function using Mason's gain formula.

- **Q.3 A.** Obtain the mathematical model of the system in **Fig.2**. What will be the transfer function of this system if k = 2 N/m and b = 2.4 N-sec/m and m = 2 Kg?
 - **B.** Determine the range of K for stability of the system having a characteristic equation 10

$$P(s) = s^4 + 2s^3 + 2s^2 + s + K = 0$$

using Routh's criterion.

Turn Over

Paper / Subject Code: 41103 / Feedback Control System

Q.4 A. Determine the position, velocity and acceleration error constants for unity feedback 10 systems with open loop transfer functions

(i)
$$G(s) = \frac{k}{(T_1s+1)(T_2s+1)}$$
 (ii) $G(s) = \frac{1}{s(s+\alpha)}$

Where T_1 , T_2 and α are positive constants.

B. Construct the root locus for the system

$$G(s) = \frac{K}{s^3 + 6s^2 + 11s + 6}$$

10

10

10

with feedback H(s) = 1.

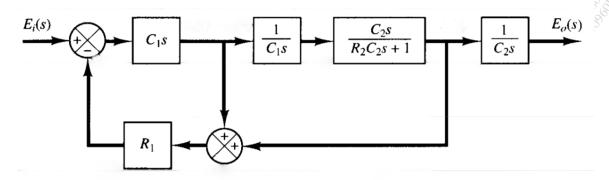


Fig.3

- **Q.5 A.** Obtain $E_o(s)/E_i(s)$ for the system in **Fig.3** using block diagram reduction technique.
 - **B.** Define stability of the system. Determine the stability of the system using Hurwitz 10 criteria, if characteristic equation of the system is given by,

$$P(s) = s^4 + 12s^3 + 49s^2 + 78s + 40 = 0$$

Q.6 A. Draw Nyquist plot for the system,

$$G(s) = \frac{1}{s(0.4s+1)(0.5s+1)}$$

What frequency does the response will cross the real axis and what will be the magnitude at that frequency?

B. Draw Bode plot for the system,

$$G(s) = \frac{15(s+15)}{(s+1.5)(s+150)}$$

and obtain gain and phase margins from plot.

[Time: Three Hours]

Q.P.Code:37876

[Marks:80]

		N.B:	1.	Question.No.1 is compulsory.					
			2.	Attempt any three questions from remaining five questions.					
			3.	Assume suitable data wherever necessary.	3776				
			4.	Figures to the right indicate full marks.					
					20				
1									
	a			mbert's Law and explain the causes for deviation from Beer's law.					
	b	Determine 10 ⁻³⁴ J sec		onance frequency of proton in Ho=23,000 G, I= $\pm 1/2$, μ = 2.797, and h= 6.626 x	ζ				
	c			f the principle of operation of mass spectrometry.					
	d	Explain T	ime d	lecay of radioactive isotopes.					
	e	Calculate	the ei	nergy of i) 5.3 Å photon, ii) 530 nm photon of visible radiation.					
2	a	Explain the working of a double beam UV spectrometer with neat diagram. 10							
	b	With neat spectrome	_	ram, explain Raman effect. Draw and explain the construction of Raman	10				
3	a			ain the working of Atomic Absorption spectrometer.	10				
	b	With a nea	at dia	gram, explain the working of Gas chromatograph. Also state its applications.	10				
4	a			ncept of Fluorescence and Phosphorescence. Also explain the working of sing orimeter with neat diagram.	le 10				
	b	/X . OV ~		rking of Photomultiplier tube.	10				
	U	Explainti	E WO	TKING OF THOTOIRUITPHET LUCE.	10				
5	a	Explain w	ith a	neat diagram, the working of Ionization Chamber.	10				
	b	Explain P	arama	agnetic Oxygen analyzer with a neat diagram.	10				
6	\$ \chi_0';			es on (any two)	20				
	a	Gas densit							
	b	Flame ion	izatio	on detector					
10, T	C	Monochro	mato	Nrs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
700	EO L	3 C 7 C C) (X, C) (X, C) (X, Y, C) (

	(Time: 3 Hours)	Total Marks: 80	
N. B.	 Question No. 1 is compulsory. Answer any 3 questions from the remain Assume suitable data wherever necessar 		
Q1	Solve any four (a) Explain the significance of all pass filter (b) With suitable diagram discuss the conce (c) Explain the characteristics of digital data (d) Explain V to F converter (e) What are the four characteristics of 3 ter	pt of loading and how to avoid it.	20
Q2	(a) Draw and explain circuit diagram of did advantages over practical differentiator		2(
	(b) Explain the optical encoder signal cond linear velocity application with suitable		
Q3	(a) Draw and explain the principle and con the signal conditioning associated with		20
	(b) Temperature is to be measured in the ra ±2°C. The sensor is a resistance that va this temperature. Develop analog signal varying linearly 0V to 5V for this temperature.	ries linearly from 100Ω to 139.2Ω for conditioning that provides a voltage	
Q4	(a) Mention the types of analog to digital co	nverters and explain any one of them	20
	(b) Discuss the applications of Instrumentat	ion amplifier. Explain one in detail.	
Q5	(a) What is a multivibrator? Explain astable design astable multivibrator for 35% and	1X, E. O.	20
	(b) A CdS cell has a dark resistance of 100k $30k\Omega$. The cell time constant is 72ms. D comparator within 10ms of the beam int	evise a system to trigger a 3V	
Q6	Write a short note on . (Any Four) (a) Impedance matching and concept of load (b) Sample and hold circuit (c) Data Acquisition System (d) Phase lock loop (e) Peak detector	ling	20

Page 1 of 1 58967