(3 Hours) (Total Marks: 80)

N.B.

- 1. Question No.1 is Compulsory.
- 2. Answer any three out of remaining five questions
- 3. Assume any suitable data wherever required but justified the same
- 4. Illustrate answer with sketches wherever required
- Q 1 a. State whether true or false and justify the same (Any five)
 - 1) Soft starter provide significant energy savings in case of variable torque load (02)
 - 2) In a distribution system air circuit is generally used as main circuit breaker (02)
 - 3) Electronic ballast will improve energy efficiency (02)
 - 4) Energy efficient motor is more compact in size compared to standard motor of (02) same rating
 - 5) Derating factors does not play vital role in cable sizing and selection (02)
 - 6) In a distribution network, Dyn11 grouped transformer is generally used (02)
- Q 1 b. Name and explain the function of following protective devices (05)
 - i) No.51 ii) No.52 iii) No.27 iv) No.32 v) No.55
- Q 1 c. What can you say about energy monitoring and Targeting. List out the elements of monitoring and targeting (05)
- Q 2 a) From the data given below, (10)
 - i. Draw the SLD showing the location of loads metering devices and various protective devices and their ratings.
 - ii. Calculate the kVA rating of transformer required for the loads.
 - iii. Specify the ratings of HT and LT (main) circuit breaker

Type of	Load in	Efficiency	Power	Load	Diversity
load	kW		Factor	Factor	Factor
Plant I	800	0.9	0.8	0.8	0.7
Plant II	600	0.8	0.85	0.75	0.8
Heaters	350	0.8	0.7	0.85	0.85
Other load	300	0.75	0.75	0.9	0.8

- b) Discuss various energy efficient technologies used to improve performance of (10) motor.
- Q 3 a) A MCC supplies power to 5 motors each of 15HP, 50Hz, 440V, 0.85p.f lag operating at 87%, 1440rpm, delta connected I.M. Distance between MCC and motor installation is 40m. Ambient temp is 40°C. Fault level at distribution point is 20kA. Assume type F installation. Size the copper cable for supplying power from MCC to motor and specify the same. Make suitable assumptions if necessary with justifications.

Sr. No	Type of Cable	Value of k (Cu)
a) > > >	PVC cable ≤ 300mm ²	115
b)	PVC cable > 300mm ²	103
c) (XLPE cable	114

- b) What are the factors are to be considered while selection and installation of DG (10) set? Explain in detail.
- Q 4 a) What way you would design illumination system for a reading room with dimensions (20L*15B*3.5H) in meter. Develop the lighting layout and justify the various assumptions.
 - b) How would you classify types of installation of capacitor bank in detail? (10)
- Q 5 a) Define Energy Audit? Explain need of energy audit? Explain in detail the steps (10) taken to perform detailed audit
 - b) How would you categorize different means to achieve the energy efficiency in (10) motor? Explain in detail.
- Q 6 Write a short note on (any four)

(20)

- i) Variable Speed Drives
- ii) UPS
- iii) CUSUM Technique
- iv) Energy Management System
- v) Elementary Diagram

Data for Illumination Design problems

		$R_{\rm C} = 0.7$	S S S S S	2000	$R_{c} = 0.5$	3233	$R_c = 0.3$		
K	R _W = 0.5	R _W = 0.3	$R_{W} = 0.1$	$R_{W} = 0.5$	$R_{W} = 0.3$	$R_{W} = 0.1$	$R_{W} = 0.5$	$R_{W} = 0.3$	R _W = 0.1
0	0	0,8%	000	0	000	0.0	6 20 or 2	0	0
0.6	0.43	0.39	0.36	0.42	0.38	0.36	0.41	0.38	0.36
0.8	0.45	0.41	0.38	0.44	0.40	0.38	0.43	0.40	0.38
1.00	0.51	0.47	0.44	0.55	0.47	0.44	0.49	0.46	0.40
1.25	0.55	0.51	0.49	0.53	0.50	0.48	0.52	0.50	0.48
1.50	0.57	0.54	0.52	0.56	0.53	0.51	0.54	0.52	0.50
2.00	0.61	0.58	0.56	0.59	0.57	0.55	0.57	0.56	0.54
2.50	0.63	0.61	0.59	0.61	0.59	0.57	0.59	0.58	0.56
3.00	0.65	0.63	0.61	0.63	0.61	0.59	0.61	0.59	0.58
4.00	0.67	0.65	0.63	0.64	0.63	0.62	0.62	0.61	0.59
5.00	0.68	0.67	0.65	0.65	0.64	0.63	0.63	0.62	0.61

20 K		Lamp Data	
Sr. No.	Type of Lamp	Wattage	Lumen output
10 45 C		18 (Halo phosphate)	1015
3 4 4 4		36 (Halo phosphate)	2450
	Fluorescent (T8/T5)	18 (82/84/86)	1300
		36 (82/84/86)	3250
		28 (T5)	2800
XX 45 65		9	600
8 8 8 E	CFL	7 11	760
)		13	920
47.8.95		18	1200
6347			
			TURN OVER

56869 Page **2** of **3**

TABLE 14.

[EE-Table 902.

Current-carrying capacities and associated voltage drops for twin and multicore p.v.c. -Insulated cables, non-armoured (copper conductors) Cooductor operating temperature: 70°C

	Installation methods A to C tol				h	Installation mothods E to Heal Fig. 1 ('Clipped direct')				Installation method K of Fig. 1 ('Defined conditions')		
Conductor Cross sectional area	One twin cable One three-core cable with or without		One Twin cable With br without prolective conductor single-phase a.c. or d.c.		without p conducte four-con	One three-core cable with or without protective conductor or one four-core cable, three phase		n cable without conductor phase r d.c.	One three-core cable with or without protective conductor or one four-core cable, three phase			
	Current carrying capacity	Volt drop per ampere per metre 3	Current carrying capacity	Volt drop per ampere per metre 5	Current carrying capacity	Volt drop per ampere per metre 7	Current carrying capacity	Volt drop per ampere per metre 9	Current carrying capacity	Voll drop per ampere per metre 11	Current carrying capacity	ampere per metre 13
mm²	2 A	mV	A	mV	A 16	mV	A 13	. m∨ 37	A	mV	A	mV
1.0	14	42	12	37	16 20	42 28	17	24		•		• •
1.5	18	28 17	16 21	24 15	28	17	24	15		•	•	- FLAT
2.5	24	11			36	11.	32	9.2 6.2 3.7 2.3		•	•	- CABL
ē	32 40 53 70	7.1	29 36 49 62	9.2 6.7 2.3	36 46 64 85	42	32 40 54	3.7		•	•	ONLY
10 16	-53	7.1 4.2 2.7	62	2.3	85	2.7	4:	2.3	114	4.0	05	1-6
25	79 98	1.8	70 86	· 1.6	108 132 163	1.8 1.3 0.92	90 115 140	1.6	139	1.3 0.92	95 122 48	9.81
25 35 50 70 95	98	1.3	80		163	0.92		0.81				0.61
70		•	• ,	•	207 251	0.65 0.64 0.48 0.46	176 215	0.57 0.42	218 265	0.65 0.64 0.48 0.46		8.42
	•	•	•		290	0.40 0.36	251	0.34	306	0.40 0.38	265	0.34
120 150			٠.	•	330	0.32 0.25		0.29	348	0.32 0.25 0.29 0.23	302 348	0.29 . 0.24
185			•	• • • • • • • • • • • • • • • • • • • •	380	0.29 0.23 0.25 0.18		0.24 0.20	400 474	0.25 0.18		0.20
240	• •	• .	•		450 520	0.25 0.18 0.23 0.14	450	0.18	548	0.23 0.14	474	0.18 0.17
300 400		:		•	600	0.22 0.11	520 TORS	0.17	632	0.22 0.11	548	U.17

TABLE 15
[EE-Table 9D3
Current-carrying capacities and associated voltage drops for twin and multicore armoured p.v.c. -insulated cables (copper conductors).

Ambient temperature Correction factor

FOR AMBIENT TEMPERATURE
Ambient lemperature
Correction factor

	Installation method E, F and G † of Table 11 ('Glipped direct')					Installation method K of Table 11 ("Defined conditions")				
Conductor	One twin cable single phase a.c. or d.c.		One three - or- four core cable three-phase		One twin cable single phase a.c. or d.c.			One three - or- four core cable three-phase		
sectional area	Current carrying capacity 2		Volt drop per ampere per metre 3	Current carrying capacity 4	Volt drop per ampere per metre 5	Current carrying capacity 6		Vol tdrop per ampore per metre 7	Current carrying capacity 8	Per ampere per metre 9
mm² 1.5 2.5 4	A 20 29 37 48		mV 29 18 12 7.4	A 18 24 31 41	mV 25 16 9.6 6.3	A : : 50		mV 7.3	A 42	mV 6.3
10 16 25 35 50	66 86 115 142 168		4.3 2.7 1.8 1.3 0.92	56 73 97 119 147	3.8 2.3 1.6 1.1 0.81	69 90 121 149 180		4.3 2.7 1.8 1.3 0.92	58 77 102 125 155	3.8 2.3 1.6 1.1 0.81
70 95 120 150	209 257 295 337	a.c 0.65 0.48 0.40 0.32	d.c. 0.64 0.46 0.36 0.25	180 219 257 295	0,57 9,42 9,34 0,29	220 270 310 355	a.c. 0.65 0.48 0.40 0.32	d.c. 0.64 0.46 0.36 0.25	190 230 270 310	0.57 0.42 0.34 0.29
185 240 300 400	390 461 523 589	0,29 0,25 0,23 0,22	0.23 0.18 0.14 0.11	333 399 461 523	0.24 0.20 0.18 0.17	410 485 550 620	0,29 0,25 0,23 0,22	0.23 0.18 0.14 0.11	350 420 475 550	0.24 0.20 0.18 0.17

25°C TABLE-36

35°C 0.94

Correction factors for groups of more than three single-core cables or more than one multicore cables or more than one multicore cables

Multicore cables:	19 9 7 6 9 8.		Nun	ber of c	ables			
(Factors to be applied to the values for one	2 3	4	5	6	7	8	9	10
cable)	0.80 0.70	0.65	0.60	0.57	0.52	0.48	0.45	0.43

NOTES: These factors are applicable to groups of cables all of one size equally loaded, including groups bunched in more than one plane

> Where, spacing between adjacent cables exceeds twice their overall diameter, no reduction factor need be applied

Paper / Subject Code: 52802 / Drives & Control

Marks: 80

Time: 3 Hours

Note:- 1.	Question No. 1 is compulsory	3, 6, 6,
2.	Attempt any three questions out of remaining five questions	
3.	Figures to the right indicates marks	
4.	Assumptions made should be clearly stated	
Qu.1 (a)	Draw the block diagram of Electric drive. State the function of power modulator.	[5]
(b)	Explain the following terms 1) Intermittent periodic duty. (2) Continues duty with starting & breaking.	[5]
(c)	Explain plugging operation in DC motor drives.	[5]
(d)	Differentiate scalar control & Vector control Schemes.	[5]
Qu.2 (a)	A constant speed motor has the following duty cycle. (a) load rising linearly from 200 to 500 KW for 4 min. (b) Uniform load of 400 KW for 2 min. (c) Regenerative power returned to the supply reducing linearly from 400 KW to zero for 3 min. (d) Remains ideal for 4 min. Determine the power rating of the motor assuming loss to be proportional to (power) ²	[10]
(b)	Explain V/F method of speed control of 3 phase induction motor	[05]
(c)	How slip power wasted in rotor circuit resistance of IM can be recovered using static Scherbius drives. Explain?	[05]
Qu.3 (a)	Explain AC dynamic braking of an induction motor with two lead connections.	[10]
(b)	Explain the operation of chopper control separately excited dc motor in motoring & regenerative braking mode.	[10]
Qu.4 (a)	Explain the multi-quadrant operation of a motor driving a hoist load with suitable diagram.	[10]
(b)	Discuss the operation of single phase fully controlled converter fed dc motor separately excited motor in continues mode along with its speed torque characteristics of drive	[10]
Qu.5 (a)	Explain with neat block diagram direct vector control scheme of induction motor.	[10]
(b)	Explain the closed loop speed control scheme with inner current control loop	[05]
(c)	Derive the temperature expression for the thermal model of motor for heating & draw its characteristics with time.	[05]
Qu.6 (a)	Draw the circuit diagram of switched reluctance motor & explain its working.	[10]
(b)	Write a short note on stepper motor drive.	[10]

Duration 3 Hours

Total Marks - 80

NB: -	1)	Question	No. 1	is	Comp	alsory.
-------	----	----------	-------	----	------	---------

- 2) Attempt any three Questions out of remaining five Questions.3) Assume suitable data if necessary and justify the same.

Q1. Answer all questions

	a)	Explain the merits and demerits of transmission interconnection?	05
	b)	Write a short note on ideal load compensator?	05
	c)	What are the objectives of shunt compensation?	05
	d)	Explain the factors limit the loading capability of transmission line?	05
Q2	a)	Explain in detail with necessary diagrams the basic types of FACTS controller?	10
	b)	Explain the Thyristor Controlled Reactor (TCR) in detail & condition to obtained Thyristor Switched Reactor (TSR) from TCR.	10
Q3	a)	Derive approximate formula for voltage regulation using short circuit level.	10
	b)	Explain variable impedance type series compensation (TSSC).	10
Q4	a)	Explain power factor correction in a single phase system	10
	b)	Explain the Thyristor Controlled Phase Angle Regulator (TCPAR).	10
Q5	a)	Explain switching converter type series compensation (SSSC).	10
	b)	Explain the midpoint shunt reactor or capacitor var compensator in detail with the help of two machine system.	10
Q6	a)	Explain the shunt compensation by synchronous voltage source	10
\$2 50 C	b)	Explain the basic operating principle of Unified Power Flow Controller (UPFC) with relevant diagram.	10

Duration: Three Hours Total Marks: 80

Note:

1.	Question	No.	1	is	com	pulsory	/

- 2. Solve any three questions out of remaining five questions
- 3. Figure on right indicates full marks

Q1	a.	What is Wide Area Network (WAN)?	5
	b.	Explain in short the automated meter reading (AMR)	5
	C.	What do you meant by self healing grid?	5
	d.	Explain briefly Wide Area Measurement System (WAMS)	5
Q2	a.	What is the need of smart grid?	10
	b.	What are the opportunities and barriers of smart grid?	10
Q3	a.	Elaborate on Plug in Electric Hybrid Vehicles	10
	b.	Write a note on smart appliances	10
Q4	a.	Write a note on Geographic Information System (GIS)	10
DES	b .	Write a note on Phasor Measurement Unit (PMU)	10
Q5	a.	Elaborate on the concept of microgrid	10
	b.,	Write a note on Distributed Energy Resources (DER)	10
Q6	a	Explain GPS and Wi-Fi communication technologies	10
200 S	b .	Explain Wi-Max based communication technology	10

(Time: 3 Hours) Total Marks – 80

N.B.:- (1) Question No.1 is compulsory.

- (2) Attempt any three questions out of remaining five questions.
- (3) Assume necessary data wherever necessary.

		20
Q 1.	Answer any four of the following questions.	60
a)	What do you mean by weather load model?	5
b)	Write short note on DC load flow.	5
c)	What do you mean by bath tub curve in reliability studies?	5.
d)	Obtain COPT of a generating system consisting of:	5
	3*10MW units with FOR of 0.01	9
	1*20MW unit with FOR of 0.01	
e)	Draw the Markov model used for rapid start units in operating reserve studies.	5
Q 2 a)	Explain various classifications of power system loads.	10
Q 2 b)	What do you mean by load forecasting?	10
Q 3 a)	Explain reactive power planning of power system.	10
Q 3 b)	Explain strategic planning of powers system.	10
Q 4 a)	Derive the general expression for reliability in terms of hazard rate.	10
Q 4 b)	Evaluate reliability of the given system using conditional probability method.	10
	Each component has a reliability of 0.99. Take E as the key-stone element.	

Paper / Subject Code: 52810 / Power System Planning & Reliability

Q 5 a)	A generating system consists of the following units:	10
	1*10MW units with FOR of 0.08	
	1*20MW units with FOR of 0.08	
	1*30MW units with FOR of 0.08	
	1*40MW units with FOR of 0.08	
Q 5 b)	Calculate LOLE for this system for a single daily peak load of 60MW. A generating system contains 3*25MW units each with a 4% FOR and 1*30MW unit with a 5% FOR. If the peak load for a 100 day period is 75MW, what is the LOEE for this period? Assume that the appropriate load characteristic is a straight line from the 100% to the 80% points.	10
Q 6 a)	What are the various data required for reliability evaluation of composite generation and transmission systems?	10
Q 6 b)	Write short notes on:	10
	Area risk curve ii) Outage replacement rate	

58821 Page 2 of 2