(3 Hours) Total Marks: 80

N.B.:-	(1)	Question	No.1	is	compulsory	
--------	-----	----------	------	----	------------	--

- (2) Attempt any Three questions out of remaining Five questions.
- (3) Assume suitable data if necessary and justify the same.

Q 1.	Answer the following questions.	20
	A) Explain cut off characteristics of HRC fuse.	
	B) Explain current chopping phenomenon.	
	C) What is primary and backup protection?	
	D) Explain construction and working of Isolator	
Q 2 a)	Explain the working of induction disc relay with neat diagram.	10
Q 2 b)	Discuss various parameters of protective relay.	10
Q 3 a)	Explain with neat diagram the construction and working of SF ₆ Circuit Breaker.	10
Q 3 b)	Explain resistance switching used in arc interruption.	10
Q 4 a)	Explain motor protection against single phasing with neat diagram.	10
Q 4 b)	Explain TRV and RRRV. Derive an expression for restriking voltage.	10
Q 5 a)	Explain the different Earth Fault Schemes and its application.	10
Q 5 b)	Explain current grading and time grading relay system of protection of feeder.	10
Q 6 a)	Compare static relays with electromagnetic relays.	10
O 6 b)	Draw and explain operation of Oil Circuit Breaker.	10

Paper / Subject Code: 89302 / Microcontroller Applications

[Total Marks: 80 (3 Hours) Question No 01 is compulsory. Attempt any Three questions from the remaining questions. Each question carries 20 marks. Figure to the right indicates full marks. Attempt any 04 sub-questions out of 05 sub-questions. I] Compare the microprocessor with microcontroller. (05 marks) II] Describe the Access Bank concept used in Pic18 microcontroller. (05 marks) III] Explain the GIE and PEIE bits with reference to interrupt. (05 marks) IV] Describe the Program Counter (PC) and Table Pointer (TBLPTR) registers. (05 marks) V] Explain the Timer0 Control Register (T0CON) used in Pic18. (05 marks) A] What is mean by Addressing mode? Explain the addressing modes used in Pic18 O. 2. microcontroller. (10 marks) B] Explain the memory organization (Program and Data Memory) of Pic18 Microcontroller. (10 marks) Q. 3. A] Explain the different instruction formats used in assembly level programming of Pic18 microcontroller. (10 marks) B] Write a C program to flash an LED connected at RB1 at a frequency of 1KHz.Use Timer0 in 16-bit mode, Crystal oscillator frequency = 10MHz and prescaler of 64. (10 marks) Q. 4. A] Describe the various special function registers used in USART module used in Pic18 microcontroller for serial communication. (10 marks) B] Explain the inbuilt ADC module interfacing of Pic18 microcontroller. (10 marks) Q. 5. A] Explain the Table Read operation along with the instructions associated with it. (10 marks) B] Explain in brief, the Capture, Compare and PWM (CCP) module of Pic18. (10 marks) Write any 02 short notes. i] LCD interfacing with Pic 18 microcontroller. (10 marks) ii] Seven Segment LED Interfacing with Pic 18 microcontroller. (10 marks) iii] Stepper motor interfacing with Pic 18 microcontroller (10 marks)

Duration: 3	Hours					Marks:
Note:						
	o. 1 is compulsory.					
_	wer any three question	s from O. N.	2 to O No			
	e in legible handwritii		3. 2 to Q. No	J. O.		
	e any suitable assump	<u> </u>	er required			
	t make suitable suppo					
	re to the right indicate		is wherever	desired.		
0. Tigu	ic to the right indicate	inarks.				
Q1 Each o	question carries five m	arks V				20
a.	Draw the bode plot		ag compens	ator Why	it is called as	20
a.	lag compensator?	or a typicar i	ag compens	ator. Wily	it is carred as	, 40
b.	Where a pole should	he placed or	z-plane to (drive the s	teady state en	or
0.	of a sampled system	. • 1	1 z prane to v	arre the s	teday state cri	.01
c.	Where is the region		on the z-plan	ne? Compa	are that with t	he 💸
0.	stability region in s-1	7 7	in the z plan	ic. Compe		
d.	Under what condition		u use an ob	server in	vour state spa	ce
20	design? Which plan			The second secon	·	
	observer? Why?	. Topico	20			,,,,,,
	29					
Q2 a.	Draw the impleme	ntation for	the digital	compensa	tor defined	by 05
9	$Gc(z) = \frac{(z+0.5)}{z^2 - 0.5z + 0.7}$			20		
	$\frac{GC(Z)-}{z^2-0.5z+0.7}$					
b.	Given the following					15
	$G(s) = \frac{20(s+2)}{s(s+5)(s+7)} \Gamma$	Design a cont	roller to vie	ld a 10%	overshoot and	l a
	settling time of 2 se the parallel form.	collus by ass	unning that	me piant i	s represented	111
	the paramet form.			0,		
O3 a.	Use frequency response	onse method	s to design	a lead co	mpensator for	a 10
	unity feedback sys					
	specifications are		: percent	overshoot=	=15%, Settii	ng
	time=0.1sec, and Kv	=1000.		K		10
D.	Given the unity feed	lback system	with $G(s)=$	$\frac{\Lambda}{s(s+3)(s+9)}$	use frequen	cy 10
	response methods to					
	response with a 15%				·	•
Q4 a.	Compare PI and La	ag compensa	itor to achie	eve the de	esired respons	se, 10
	concerning to the po	ole zero loca	tions and th	e transfer	functions. Al	so
	develop the circuits	for their reali	zations.			
b. 3	A unity feedback	system	th forward	nath tr	ansfer functi	on 10
0.6	77	- A)'		_		
	$G(s) = \frac{\kappa}{(s+1)(s+5)(s+8)}$	nas 15%			te the curre	
	dominant poles using	g R.L and the	en design a F	D control	ler to reduce t	he
	neak time by a factor	r of 2				

Paper / Subject Code: 89303 / Control System Design

Q5 a. Design an integral controller to yield a 10% overshoot, 0.5 sec. settling 10 time and zero steady state error for a step input for the following plant.

b. Consider the plant
$$G(s) = \frac{(s+2)}{(s+5)(s+6)(s+9)}$$
 which is represented in observer canonical form. Design an observer with a transient response described by $\zeta=0.6$ and $w_n=120$.

- Q6 a. Given a sampler and z.o.h. in cascade with $G(s) = \frac{K}{(s+5)}$ find the range of K to make the system stable. Sampling time T=0.1 second.
 - b. For the digital system with forward transfer function 10 $G(z) = \frac{0.13(z+1)}{(z-1)(z-0.74)}$ find the static error constants and the steady state error if the inputs are u(t), t u(t) and $\frac{t^2}{2}u(t)$ for T=0.1

14514 Page 2 of 2

Duration – 3 Hours Total Marks assigned to the paper- 80 **N.B.:-** (1) Question No.1 is compulsory. (2) Attempt any three questions out of remaining five questions. (3) Assume suitable data if necessary and justify the same. Q 1. Answer the following questions. a) Define symmetric and anti-symmetric signals. b) Summarize the properties of ROC. c) Find the Fourier transform of $x(t) = e^{-2t} \cos 3t u(t)$. d) List any three properties of DTFT. Q 2 a) Write about elementary Continuous time Signals in detail. Describe whether the following signal is periodic. If periodic determine the (ii) fundamental period. $x(t) = 3\cos(4t) + 2\sin(\pi t)$ Derive the odd and even components of the following signals. Q 2 b) $x(t) = \sin(t) + 2\sin(t) + 2\sin(2t)\cos(t)$ $x[n] = \{1,0,-1,2,3\}$ Q 3 a) Find out the Fourier transform of $x(t)=e^{-at} u(-t)$ Determine the Fourier series representation of the signal (ii) $x(t) = 2 + \cos(4t) + \sin(6t)$ Q 3 b) Formulate the trigonometric Fourier series over the interval (-1, 1) for the signal Deduce the initial value of $X(z) = \frac{z-z}{(z+1)(z+2)}$ Q 4 a) 10 Evaluate the Z- transform of $x(n) = (2/3)^n u(n) + (-1/2)^n u(n)$. (ii) Q 4 b) Infer the Z-transform and ROC of $x[n] = 2^n u(n) + 3^n u(-n-1)$. 10 (i) Determine the Z-transform of the sequence $x(n) = \{5,3,2,4\}$ (ii) Q 5 a) Write short note on (i)properties of DFT (ii) Types of signals 10 Q 5 b) Determine eight-point DFT of the following sequences using radix-2 DIT-FFT 10 algorithm $x(n) = \{1, -1, -1, -1, 1, 1, 1, -1\}.$ Q 6 a) Design a digital Butterworth filter satisfying the constraints using bilinear 10 transformations. $0.707 \le |H(\omega)| \le 1.0; 0 \le \omega \le \pi/2$ $|H(\omega)| \le 0.2$; $3\pi/4 \le \omega \le \pi$. Q 6 b) Design an FIR filter for the ideal frequency response using Hamming window with 10 $Hd(\omega) = \{e^{-j2\omega}; -\pi/8 \le \omega \le \pi/8\}$ 0; otherwise.

12986

Paper / Subject Code: 89306 / Electric Traction (DLOC)

Marks: 80 **Time: 3 Hours** Note: - 1. Question No. 1 is compulsory 2. Attempt any three questions out of remaining five questions 3. Assume suitable data if necessary & justify the same 4. Figures to the right indicates marks Qu.1 Attempt any four. Marks (a) Discuss advantages of Electric traction over other system of traction. [5] **(b)** Draw speed time curve of urban and suburban services [5] How DC series motor is most suitable for traction? Discuss (c) [5] Write a brief note on sectionalizing paralleling post (d) [5] **(e)** Write a note on Kando system [5] Draw trapezoidal type speed time curve and derive the expression for distance [10] **Qu.2** (a) travelled. **(b)** Draw 132/25 KV traction substation layout and discuss its operation in detail [10] Discuss the operation of DC traction using chopper controlled drive [10] Qu.3 (a) Explain booster transformer with return conductor in detail. **(b)** [10] Discuss the protection provided for transformer & overhead lines in traction Qu.4 (a) [10] **(b)** Define the Tractive efforts. Derive the expression for total tractive efforts [10] Qu.5 (a) An electric train weighing 500 tonnes climbs up gradient with G = 8 and with [10] following speed time curve 1. Uniform acceleration of 2.5 kmphps for 60 sec Constant speed for 5 min 3. Coasting for 3 min 4. Dynamic braking at 3 kmphps to rest

Train resistance is 25 N/tonne, rotational inertia effect 10% and combined efficiency of transmission motor & power modulator is 80 %. Calculate the Specific energy consumption

(b) Explain the operation of power and auxiliary circuits use in traction [10]

Qu.6 (a) Discuss the current collection techniques used in overhead and underground system [10]

(b) Write a short note on DC and AC Track circuits [10]

(3 Hours)

[Total Marks: 80]

N.B.			
N.D.		1. Question No.1 is Compulsory.	
		2. Answer any three out of remaining five questions.	
		3. Assume any suitable data wherever required but justified the same.	
		4. Illustrate answer with sketches wherever required.	
Q 1	a)	Write a short note on: Solar Pond.	(05
	b)	Explain the necessity of energy storage.	(05)
	c)	Explain different types of energy storage.	(05)
	d)	Write a short note on: E-mobility storage applications.	(05)
Q 2	a)	Write a short note on Supercapacitors.	(10)
	b)	Explain in detail about sensible heat storage.	(10)
Q 3	a)	Explain briefly about Compressed air energy storage (CAES).	(10)
	b)	Explain in detail about design considerations for sizing of different types of energy storage systems for various applications.	(10)
Q 4	a)	Write a short note on Superconducting magnetic energy storage (SMES).	(10)
	b)	Explain in briefly about latent heat storage.	(10)
Q 5	a)	Explain in detail about Pumped hydro storage system.	(10)
I AT	b)	Write a short note on: Hybrid Energy storage systems.	(10)
Q 6	a)	Explain in brief: Future technology in energy storage as Electric vehicle.	(10)
	b)	Explain working principle of Rechargeable battery. Illustrate emerging trends in batteries.	(10)

14526

(3 Hours)

Total Marks - 80

N.B.: (1) Question **No 1** is **Compulsory**.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable **data**, if required and state it clearly.

Que. 1) Attempt any four of the following:- (05-Marks each)

[20]

- a) Explain Physical realization of compensator with passive and active components.
- **b)** Explain the Transient response design using root locus technique.
- Explain Effect of Phase Lag Compensation also explain advantages and disadvantages of Lag Compensation.
- **d**) Explain Controller design by pole placement topology in phase variable form.
- e) Given a point on the z-plane, how can one determine the associate settling time and peak time.
- f) Write a short note on modeling of the sampler in digital control system.

Que. 2) [20]

- a) A unity feedback system with the forward transfer function, $G(s) = \frac{K}{S(S+7)}$ is operating with a closed-loop step response that has 15% overshoot. Do the following:
 - (i) Evaluate the settling time.
 - (ii) Design a lead compensator to decrease the settling time by three times. Choose the compensator's zero to be at -10. [10]
- b) Given the system of Figure, Design a PID controller so that the system can operate with a peak time that is two-thirds that of the uncompensated system at 20% overshoot and with zero steady-state error for a step input.

Figure: Uncompensated feedback control system

Que. 3) [20]

- a) Use frequency response methods to design a lead compensator for a unity feedback system where, $(S) = \frac{K(S+7)}{S(S+5)(S+15)}$, and the following specification are to be met: percentage overshoot=15%, settling time=0.1 Sec. and $K_V = 1000$. [10]
- b) Find the value of preamplifier gain K to yield a 9.5% overshoot in transient response for step input for the transfer function is, $G(S) = \frac{100K}{S(S+36)(S+100)}$. [10]

14569

Que. 4) [20]

a) Design a state-variable feedback controller to yield a 20.8% overshoot and a settling time of 4 seconds for a plant, $G(S) = \frac{(S+4)}{(S+1)(S+2)(S+5)}$ that is represented in cascade form as shown in Figure,

b) Design an integral controller to yield a 10% overshoot, 0.5 Sec. settling time and zero steady state error for a step input for the following plant. $\dot{X} = \begin{bmatrix} -2 & 1 \\ 0 & -5 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$; and $Y = \begin{bmatrix} 1 & 1 \end{bmatrix} X$.

Que. 5) [20]

- a) Given a Z.O.H. in cascade with, $G(S) = \frac{(S+2)}{(S+1)}$, find the sampled-data transfer function, G(z), if the sampling time, T, is 0.5 second. [10]
- **b)** For step, ramp, and parabolic inputs, find the steady-state error for the feedback control system shown in following Figure, if, $G_1(S) = \frac{20(S+3)}{(S+4)(S+5)}$, Let T = 0.1 second. [10]

Que. 6) [20]

- a) Explain the Implementation of Digital Compensator, And also develop a flowchart for the digital compensator of given function, $G_{\mathcal{C}}(Z) = \frac{z+0.5}{z^2-0.5z+0.7}$. [10]
- **b**) Explain in brief Cascade Compensation of digital system using s-plane. [10]

14569