[Time:3	irs]	[Ma	ırks:8
	N.B: 1. Question No.1 is compulsory 2. Solve any three question from the remaining 3. Figures to the right indicate full marks 4. Assume suitable data if necessary and men	ng five	
Q.1	 Attempt any 4 question a. Derive the continuity equation. What is use of this e electromagnetics b. Describe corner reflector antenna. Give a typical apprint this antenna c. Compare near field and far field radiation of antenna d. Calculate directivity and gain of a given linear broad isotropic elements with a separation of quarter wave e. Describe duct propagation. 	plication scenario for a dside uniform array of 5	20
Q.2	a. Write Maxwell's equation in point form and integral statement for each equation.b. Derive the Helmholtz wave equation for free space if fields		10 ic 10
Q.3	a. Derive the expression for vector magniteic potential density	in terms of current	10
	b. Derive the expression of total field for n isotropic p amplitude and spacing	oint sources of equal	10
Q.4	a. Describe the construction and radiation pattern of Lower Whys is it called Log periodic?b. Discuss feeding techniques for rectangular and circ		10 10
Q.5	 a.With neat sketch explain Horn antenna, also describe can be modified using physical dimensions of the same ante b. Discuss radiation pattern of resonant dipole for followi) Half wavelength (λ/2) ii)Full wavelength (λ) iii) 1.5 wavelength(1.5 λ) iv) 3 wavelengths (3 λ) 	how radiation pattern	10
Q.6	Short note on:(Attempt any two) a. Infinitesimal dipole b. Application of Gauss law for surface charge c. FRIIS transmission equation. d. Array synthesis using Binomial array		20

Duration: 3hrs [Max Marks: 80]

- N.B.: (1) Question No 1 is Compulsory.
 - (2) Attempt any three questions out of the remaining five.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data, if required, and state it clearly.
- 1 Attempt any FOUR.

[20]

a Perform bit-plane slicing on the following image.

$$I = \begin{bmatrix} 12 & 14 & 9 \\ 7 & 11 & 10 \\ 5 & 6 & 8 \end{bmatrix}$$

Reconstruct the image after discarding the LSB plane.

- **b** State the basic steps in frequency domain filtering.
- c Define morphological erosion and dilation of a binary image.
- **d** State the principle of basic global thresholding.
- **e** Compute the co-occurrence matrix $C_{1,0}$ of the following image. (One pixel to the right)

$$I = \begin{bmatrix} 3 & 1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 1 & 2 & 1 \\ 3 & 1 & 3 & 1 & 3 \\ 0 & 1 & 1 & 3 & 1 \end{bmatrix}$$

- 2 a Explain the working of the following sharpening spatial domain filters. [10]
 - The Laplacian
 - Unsharp masking
 - High boost filtering
 - **b** Perform Histogram Equalization for the following image. Show the original and equalized histogram. [10]

Intensity	0	3	2	3	4	5	6	7
No. of	70	100	40	60	10	70	10	40
pixels	5	.G	3	7				

a Write an expression for a two-dimensional DCT. Form a 4x4 DCT matrix and compute the DCT of the following sub-image. [10]

$$I = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 \end{bmatrix}$$

- b Compare Ideal, Butterworth and Gaussian Low Pass Filtering in frequency domain.
- 4 a Perform segmentation using split-and-merge technique on the following image. [10]
 Show the quad-tree representation.

6	5	6	6	7	7	6	6
6	7	6	7	5	5	4	7
6	6	4	4	3	2	5	6
5	4	5	4	2	3	4	6
0	3	2	3	3	2	4	7
0	0	0	0	2	2	5	6
1	1	0	1	0	3	4	4
1	0	1	0	2	3	5	4

b Explain morphological region filling.

[10]

5 a Explain the working of Canny edge detector.

[10]

b Find the chain code and shape number of the following shape.

[10]

- 6 a Illustrate K-means algorithm for classification of data with a suitable example. [10]
 - **b** Explain the Support Vector Machine classifier for binary classification. [10]

	(3 Hours) Total Marks: 80	
N.B. : ((1) Questions No.1 is compulsory.	
	(2) Solve any three questions out of remaining	
	(3) Draw neat labeled diagram whenever necessary	
	(4) Assume suitable data if necessary	À
Q1.	Answer any 4 questions:	
a.	Brief with suitable diagram the feature map extraction process of convolutional neural network for image recognition.	5
b.	Prove De-Morgan's theorem If X and Y are two fuzzy sets with membership functions: $\mu_x = \{0.3, 0.7, 0.2, 0.4\}$ $\mu_y = \{0.1, 0.4, 0.8, 0.3\}$.	5
c.	Discuss competitive learning with a flow chart.	5
d.	Brief about supervised and unsupervised learning? Give their examples	5
e.	Explain cross validation error based stopping criteria used in neural network training.	5
		37
Q2.a.	What are activation functions in neural networks? What are their properties? Draw any four activation functions with their mathematical equations.	10
b.		10
Q3.a.	Explain with a flow chart the error backpropagation learning algorithm.	10
b.	Explain a Mamdani fuzzy controller for deciding the wash time in a washing machine. Consider inputs as washing load and dirt. Use any suitable membership functions with three descriptors for input and output.	10
O4 a	What is De-fuzzification? Discuss any two methods of De-fuzzification.	10
b.	Implement AND function using perceptron network. Consider bipolar inputs and targets, initial bias and weights as 0 and the learning rate as 1.	10
O5 a	With a flow chart explain the gradient descent algorithm.	10
b.		10
	What are the advantages and limitations of SVMs?	
Q.6.a.	What is the difference between machine learning and deep learning? Draw and	10
b.	explain the architecture of Convolution Neural Network. Discuss its applications. Construct a discrete Hopfield network to store the patterns S1 = [1 -1 1 -1] and S2 = [-1 1 -1 1]. If the received pattern is [1 1 -1 1], identify the correct pattern.	10
	- [1 1 1 1]. If the received pattern is [1 1 -1 1], identify the correct pattern.	

		(3 Hours) [Total Mark	s: 80]
N.B.:	(1)	Question No. 1 is compulsory .	
	(2)	Solve any three questions from the remaining five	Ś
	(3)	Figures to the right indicate full marks	
	(4)	Assume suitable data if necessary and mention the same in answer sheet.	
Q.1	a)	Differentiate between Microprocessor & Microcontroller.	[5]
	b)	Compare AJMP, SJMP and LJMP instruction of 8051.	[5]
	c)	Write short notes on CPSR of ARM7.	[5]
	d)	Develop an assembly language program using ARM instruction set to calculate $3x^2 + 5y^2$. Assume x=8 and y=5.	[5]
Q.2	a)	Explain 8051 timer using TMOD and block diagram.	[10]
V	b)	Write a program for 8051 to copy a block of data 10 bytes long from RAM	[10]
		locations starting at 35H to RAM locations starting at 60H.	
0.29	P	Ewelsin Interment structure of 9051	[10]
Q.3	a) b)	Explain Interrupt structure of 8051. Suppose common cathode 7-segment display is interfaced with 8051.	[10]
		Develop Assembly language program for 8051 to display 0 to 9 decimal numbers on 7-segment display with some delay between two numbers.	V[IV]
0.4		Evaluin Conial Communication in 9051	[10]
Q.4	a) b)	Explain Serial Communication in 8051. Draw and explain the data flow model of ARM7.	[10] [10]
	(U)	Draw and explain the data flow model of ARM17.	լայ
Q.5	a)	Draw and explain the register organization of ARM7.	[10]
اح دا	b)	Explain ARM addressing modes of ARM7 Processor with example in each.	[10]
Q.6	a)	Develop an ARM assembly language program to read two 32 numbers bit	[10]
Q.0	a)	numbers stored consecutively starting at 0x40000000. Add, subtract and	լւսյ
7		multiply the two numbers and store result in next consecutive memory	
		location starting 0x40000008.	
	b)	ARM based system is working on 15MHz, P-clk frequency. An LED is	[10]
	-,	interface with Port-0 pin 16. Develop embedded C program to blink this	r-~1
		LED using hardware timer.	
		LLD using naturate timet.	
