Time:3Hours Max. Marks: 80

N.B.

- 1) Q.1 is compulsory.
- 2) Solve any 3 questions out of remaining 5 questions.
- 3) Assumptions made should be clearly stated.
- 4) Draw the figures wherever required.

Q.1 Solve any four of the following questions.

a) Check if $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is a tautology?

- 5
- b) Draw the Hasse diagram for [{2,4,5,8,10,12,20,25}, /]. Is it a Poset?
- --
- c) Define Eulerian and Hamiltonian Graph. Give examples of following type of graph 5
 - i) Eulerian but not Hamiltonian
 - ii) Not Eulerian but Hamiltonan
- d) Explain types of Quantifiers . Represent the following sentences using Quantifiers i) All hardworking students are clever.
 - ii) There is a student who can speak Hindi but does not know Marathi
- e) State the Pigeonhole principle and prove that in any set of 29 persons at least five persons must have been born on the same day of the week
 - 5

Q.2

- a) Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a*b=(ab)/2
- 10
- a) What is a transitive closure? Explain Warshall's algorithm for finding transitive closure with an example.
 - 10

Q.3

a) By using mathematical induction, prove that the given equation is true for all positive integers.

$$1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + (2n - 1) \times 2n = n(n+1)(4n-1)/3$$

b) Define Lattice? Which of the following is lattice?

8

c) Determine the sequence of which recurrence relation is $a_n = 2a_{n-1} - a_{n-2}$ with initial conditions $a_1 = 1.5$, $a_2 = 3$.

Q.4

a) Let $A = \{1, 3, 6, 9, 15, 18, 21\}$ & R be the relation of divisibility.

- i) Write the pairs in a relation set R.
- ii) Construct the Hasse diagram.
- iii) What are the Maximal and Minimal elements?
- iv) Is this poset a distributive lattice? Justify your answer.

b)

Let $H = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be a parity check matrix. Determine (3, 6) group code $e_H : B^3 \to B^6$

c) Write a short note on Types of Graphs.

Q.5

a) Let(Z,*) be an algebraic structure, where Z is set of integers and the operation * is defined by a*b= maximum of (a,b). Is (Z,*) a Semigroup? Is (z,*) a Monoid? Justify your answer.

b) Define the term Surjective function. Let E be the set of all even numbers then f: N-->E:f(x)=2x, check if it is surjective, bijective? Justify your answer.

c) Give the examples of relation R on $S = \{a, b, c, d\}$ having stated property.

8

- i) R is an equivalence relation.
- ii) R is symmetric but not transitive
- iii) R is both symmetric and antisymmetric
- iv) R is neither symmetric nor antisymmetric.

0.6

a) Define Isomorphic graphs and check whether the following graphs are Isomorphic? 8

b)In a group(G,*), Prove that the inverse of any element is unique and identity element is also unique. 6

Define Relation. Let

f: R \rightarrow R is defined as f(x) =x²

6

- g: R \rightarrow R is defined as g(x) =3x²+1 h: $R \rightarrow R$ is defined as h(x) = 9x-2

find (hof)og, go(foh).

		(3 Hours) Total Marks: 80	
N.B	(2)	Question No. 1 is compulsory Attempt any three questions out of the remaining five questions	K CO
		Figures to the right indicate full marks Make suitable assumptions wherever necessary with proper justifications	
Ο1		WILLIAM TO SEE THE SEE	[05]
Q1	A	What is Hashing? Explain Hash collision with example.	[05]
	В	Explain types of Double Ended Queue with example.	[05]
	C D	Differentiate between arrays and linked list. List different data structures along with one application.	[05] [05]
	ט	List different data structures along with one application.	[03]
Q2	A	Construct Binary Search Tree by inserting the following elements in sequence	[10]
		45, 28, 34, 63, 87, 76, 31, 11, 50, 17.	
	В	Write a program in C to implement Queue using singly linked list.	[10]
Q3	A	Write a program to perform the following operations on doubly linked list: i) Insert a node at the front of the list	[10]
		ii) Delete a node from the front of the list	8
		iii) Count the number of nodes in the list	
	ъ	iv) Display the list	5051
	В	Define Graph. Show the adjacency matrix and adjacency list representation for the following graph	[05]
	50		
		(1) (5)	
		(2) (3)	
	C	Explain stack overflow and underflow conditions with example.	[05]
		Explain stack overflow and underflow conditions with example.	[03]
Q4	A	Write an algorithm to check the well-formedness of parenthesis.	[10]
٧·	B	Show the result of inserting the elements 16, 18, 5, 19, 11, 10, 13, 21, 8, 14 one	[10]
	3	at a time into an initially empty AVL tree.	[10]
Q5	Α	Define tree traversal. Explain binary tree traversal techniques with example.	[10]
7	В	A hash table of size 10 uses linear probing to resolve collisions. The key values	[10]
		are integers and the hash function used is key% 10. Draw the table that results	
	SV	after inserting in the given order the following values: 28, 55, 71, 38, 67, 11, 10, 90, 44, 9	
Q6	A	Explain Depth First Search and Breadth First Search traversal of a graph with	[10]
) -		example.	
	В	Construct Huffman tree and determine the code for each symbol in the string "PROGRAMMING".	[10]

30156 Page 1 of 1

Paper / Subject Code: 50274 / Digital Logic & Computer Architecture

(3 hours)		nours) Total Mar	Total Marks: 8	
		N.B. 1. Question No. 1 is compulsory 2. Attempt any three questions from remaining five questions 3. Assume suitable data if necessary and justify the assumptions 4. Figures to the right indicate full marks		
Q1	A	Differentiate between Computer organization and computer architecture	05	
	В	Draw the flow chart for of Restoring division algorithm	05	
	C D	Differentiate between Hardwired control unit and Micro programmed control unit Explain IEEE 754 floating point representations.	05 05	
Q2	A	Draw the flow chart Booths algorithm for multiplication and Perform 6 X 2	10	
	В	Describe the detailed Von-Neumann Model with a neat block diagram	05	
	C	Explain Cache coherence	05	
Q3	A	Explain the different addressing modes.	10	
	В	Define Instruction cycle and draw the state diagram of instruction cycle	05	
	C	Explain Bus arbitrations	05	
Q4	A	Explain Micro instruction format and write a micro program for the instruction MUL R_1 , R_2	30	
	В	Explain Hardwired Control Unit and the various design methods associated with it.	10	
Q5	A	Explain various Memory mapping techniques	10	
Y	В	Explain the concept of Locality of reference	05	
	C	List & Explain the Characteristics of Memory	05	
Q6	A	Explain Flynn's classification.	10	
	В	Describe Instruction Pipelining and its hazards.	10	

Total Marks: 80

(3 Hours)

N.B:	1) Question number 1 is compulsory.	
	2) Attempt any three out of the remaining.	
	3) Assume suitable data if necessary and justify the assumptions.	
	4) Figures to the right indicate full marks.	
0.1		
Q1		2
A	Explain image space and object space	[5]
В	What is computer graphics and explain its applications	<i>></i> [5]
C	What are homogeneous coordinates and discuss its use in computer graphics	[5]
D	Explain point clipping with suitable example	[5]
0.2		
Q2	Evaluis anid noint allings drawing mathed for notion I with switchle discusses	[10]
A	Explain mid point ellipse drawing method for region I with suitable diagrams Given a triangle APC with coordinates A (10.10), P (100.10), C(10.100)	[10]
В	Given a triangle ABC with coordinates A (10,10), B (100,10), C(10,100). Rotate the triangle by 90 ⁰ Find the new coordinates of the triangle.	[10]
	Rotate the triangle by 90° Find the new coordinates of the triangle.	
0.2		
Q3	Explain area subdivision method with suitable example.	[10]
A B	Explain antialiasing techniques in detail	[10]
) В	Explain annanasing techniques in detail	լւսյ
Q 4		
A	Explain Liang Barsky line clipping method with suitable example	[10]
B	Explain and write matrices for 3D rotation about X, Y and Z axes	[10]
2), P	Explain and write matrices for 3D fotation about X, 1 and 2 axes	լւսյ
Q 5		
A	Derive the 2D transformation matrix for rotation with respect to fix point.	[10]
В	Calculate all the points on the line from point A(8,10) to point B(16,14) using	[10]
	DDA line drawing method	[±0]
Q 6		
A	What is window and viewport. Derive the transformation matrix for a window-to-	[10]
200	viewport transformation	[±0]
В	Discuss traditional animation techniques	[10]
, =		[-v]

(Time: 3 hours) Max. Marks: 80

[5]

[6]

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Figures to the right indicate full marks

Q.1 a) Find
$$L(t + e^t + \cos t)^2$$
 [5]

Q.1 b) Find the Fourier series for
$$f(x) = x \sin x$$
 in $(-\pi, \pi)$

Q.1 c) Find Karl Pearson's coefficients of correlation between X and Y from the following data

X	100	200	300	400	500
Y	30	40	50	60	70

Q.1 d) If
$$f(z) = (x^3 + axy^2 + bxy) + i(3x^2y + cx^2 + y^2 + dy^3)$$
 is analytic, then find a, b, c, d

Q.2 a) A random variable X has the following probability function

Find i) k, ii) $P(X \ge 4)$, iii) P(X < 5)

Q.2 b) Determine the analytic function whose real part is $u = e^x \cos y$ [6]

Q.2 c) Evaluate
$$\int_0^\infty e^{-t} \cosh t \cos 2t \ dt$$
. [8]

Q.3 a) Obtain the Fourier series for
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
 in the interval $(0, 2\pi)$ [6]

Q.3 b) A continuous random variable X has the p.d.f.
$$f(x) = kx^2e^{-x}$$
, $x \ge 0$ [6] Find i) k, ii) $P(1 \le x \le 2)$

Q.3 c) Find
$$L^{-1}\left[\frac{s+29}{(s+4)(s^2+9)}\right]$$
 using partial fraction method [8]

Q.4 a) Find
$$L[f(t)]$$
, where $f(t) = \cos t$, $0 < t < \pi$ and $f(t) = 0$, $t > \pi$ [6]

Q.4 b) Compute Spearman's rank correlation coefficient for the following data [6]

X	18	20	34	52	12
Y	39	23	35	18	46

Q.4 c) Obtain the Fourier series for

[8]

$$f(x) = \begin{cases} 1, & 0 \le x \le \pi \\ 2 - \frac{\pi}{x}, & \pi \le x \le 2\pi \end{cases}$$

Q.5 a) Find
$$L^{-1}\left[\frac{4s+13}{s^2+8s+13}\right]$$
 [6

Q.5 b) Find
$$L[(1 + \sin 2t)^2]$$

[6]

Q.5 c) Find the line of regression of Y on X for the following data

[8]

X	5	6	7.00	8	9	10	11
Y	11	14	14	15	12	17	16

Q.6 a) Find mean and variance for the following distribution

[6]

X	8	12	16	20	24
P(X = x)	1/8	1/6	3/8	1/4	1/12

Q.6 b) Find i)
$$L^{-1}[\cot^{-1}2s]$$
 ii) $L^{-1}[\log(1+\frac{4}{s^2})]$

Q.6 c) Prove that the function $f(z) = e^{2z}$ is analytic. Also, find its derivative.

[8]
